Пластические смазки и специальные жидкости. Марки пластичных смазок и их применение Смазки для автомобилей назначение

Пластичные смазки – это смазки предназначенные для уменьшения трения в узлах качения и скольжения (подшипниках, шарнирах, ступицах колес и т.д.), работающих в значительном диапазоне температур.

Для получения автомобильных пластичных смазок используют главным образом обычное нефтяное мало- и средневязкое масло типа веретенного, машинного и т.д., которое загущают. В качестве загустителя служит кальциевое, натриевое или литиевое мыло. Для улучшения консервационных, противоизносных свойств, химической стабильности, термостойкости в смазки вводят различные присадки, наполнители и стабилизаторы в количестве 0,001…5%.

Основными физико-химическими свойствами пластичных смазок, определяющими их эксплуатационные качества, являются: вязкость (пенетрация), предел прочности, температура каплепадения, водостойкость, коллоидная и механическая стабильность.

Пластичные смазки делятся на четыре группы:

Антифрикционные смазки используются для снижения износа и трения скольжения сопряженных деталей.

Консервационные смазки используют для предотвращения коррозии металлических изделий и механизмов при хранении, транспортировании и эксплуатации. Они обозначаются индексом «З». Консервационные смазки применяют для металлических изделий и механизмов всех видов, за исключением случаев требующих использования консервационных масел или твердых покрытий.

Канатные смазки применяют для предотвращения износа и коррозии стальных канатов и тросов. Их обозначают индексом «К».

Уплотнительные смазки используют для герметизации зазоров, облегчения сборки и разборки арматуры, сальниковых устройств, резьбовых соединений и любых подвижных соединений, в том числе вакуумных систем. Уплотнительные смазки делятся на три подгруппы:

  • арматурные (индекс «А»)
  • резьбовые («Р»)
  • вакуумные («В»)

Обозначение пластичной смазки кратко характеризует ее назначение, состав и свойства.

Обозначение состоит из пяти буквенных и цифровых индексов, указывающих: группу (подгруппу) в соответствии с назначением смазки; загуститель; рекомендуемый температурный интервал применения; дисперсионную среду; консистенцию смазки.

Приведем примеры обозначения пластичных смазок:

  • СКа2/8-2: С – смазка общего назначения для обычных температур (солидол); Ка – загущена кальциевым мылом; 2/8 – предназначена для применения при температурах – 20…+80 °С (вязкость смазки при –20 ºС близка к 2000 Па·с); отсутствие индекса дисперсионной среды – приготовлена на нефтяном масле; 2 –пенетрация 265…295 при 25 °С;
  • МЛи 3/13-3: М – многоцелевая; Ли – загущена литиевым мылом; 3/13 – предназначена для применения при температурах –30…+130 °С; отсутствие индекса дисперсионной среды свидетельствует о том, что смазка приготовлена на нефтяном масле; 3 – пенетрация 220…250 при 25 °С.

Для легковых автомобилей применяют следующие основные пластичные смазки:

  • «Литол-24» – для подшипников ступиц колес, водяного насоса, промежуточной опоры карданных валов, подшипниковых узлов, не подверженных влиянию воды, подшипников редуктора заднего моста
  • ЦИАТИМ-201 – для втулок валика прерывателя-распределителя, подшипников генератора, гибкого вала спидометра, замков и петель дверей и др.
  • смазка № 158 – для игольчатых подшипников при сборке карданных шарниров, не имеющих пресс-масленок, приборов электрооборудования и закрытых подшипников
  • УСсА – для листов рессор, троса привода тормозных механизмов в оболочке, буксирного троса
  • ВТВ-1 – для наконечников проводов и полюсных выводов , торсионов крышки багажника, упора капота, ограничителя открывания дверей, шарниров и пружин крышки топливного бака. В аэрозольной упаковке ВТВ-1 применяют также для смазывания замочных скважин дверей и крышки багажника
  • «Фиол-1» (литиевая) – для шлицевого соединения фланца переднего карданного вала, троса управления салазок перемещения сидений
  • ШРБ-4 – для шаровых пальцев передней подвески и шарниров рулевых тяг
  • ШРУС-4 – для шарниров равных угловых скоростей ведущих колес

© Михаил Ожерельев

В автомобиле имеется достаточно много узлов, где для разделения трущихся поверхностей используются густые мазеобразные продукты, называемые пластичными смазками . О них и пойдет речь.

Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Например, колесные и шкворневые подшипники, шарниры рулевого управления и подвески, карданные и шлицевые соединения и т.д. Раньше этот список был достаточно обширный, а сегодня мы видим, что в автомобиле доля пластичных смазок среди прочих эксплуатационных материалов уменьшается. Причина тому - применение необслуживаемых узлов на основе инновационных конструкционных материалов (например, замена пары трения «втулка-палец» на шарнир из высокомолекулярной резины). Однако там, где использованию мазеобразных продуктов нет альтернативы, к ним сегодня предъявляются самые строгие требования, в том числе и экологического характера. Зачастую происходит так, что для каждого конкретного узла, будь то седельно-сцепное устройство или шарниры подвески кабины, рекомендуется лишь определенная марка эксплуатационного материала. Как выбрать правильный продукт? В этом нам и предстоит разобраться.

И твердые, и жидкие


© Михаил Ожерельев

Пластичные смазки по консистенции занимают промежуточное положение между жидкими маслами и твердыми смазочными материалами (графитами, например). При невысокой температуре и отсутствии нагрузки смазка сохраняет форму, приданную ей ранее, а при нагреве и под нагрузкой начинает слабо течь - настолько слабо, что зоны трения не покидает и через уплотнения не просачивается.


© Михаил Ожерельев

Основные функции пластичных смазок не отличаются от тех, что возлагаются на жидкие масла. Все то же самое: снижение износа, предотвращение задиров, защита от коррозии. Специфика лишь в области применения: пригодность для смазывания сильно изношенных пар трения; возможность использования в негерметизированных и даже в открытых узлах, где имеется вынужденный контакт с влагой, пылью либо агрессивными средами; способность прочно держаться на смазываемых поверхностях. Очень важным свойством пластичных смазок является длительный срок эксплуатации. Некоторые современные продукты практически не изменяют своих показателей качества за весь период работы в узле трения и поэтому могут закладываться одноразово, при сборке.

Если говорить об общих недостатках мазеобразных субстанций, то в первую очередь следует обратить внимание на отсут­ствие охлаждения (отвода теплоты) и выноса продуктов износа из зоны трения. К слову, возможно поэтому некоторые автопроизводители, разрабатывая такие узлы, как, например, колесные ступицы, нередко отдают предпочтение трансмиссионным маслам.


© Михаил Ожерельев

Самая простая пластичная смазка состоит из двух компонентов: масляной основы (минеральной или синтетической) и загустителя, под действием которых масло становится малоподвижным. Загуститель - каркас смазки. Упрощенно его можно сравнить с поролоном, удерживающим своими ячейками жид­кость. Чаще всего в качестве загустителя, содержание которого может составлять от 5 до 30% от массы продукта, используют кальциевые, литиевые или натриевые мыла (соли высших жирных кислот). Наиболее дешевы кальциевые смазки, получаемые загущением индустриальных минеральных масел кальциевыми мылами, - солидолы. Когда-то они были настолько общеупотребительными, что слово «солидол» стало обиходным обозначением пластичной смазки вообще, хотя это не совсем корректно. Солидолы не растворяются в воде и обладают очень высокими противоизносными действиями, однако нормально функционируют лишь в узлах с рабочей температурой до 50–65 °С, что очень ограничивает их применение в современных автомобилях. А наиболее универсальны литолы - смазки, полученные загущением нефтяных и синтетических масел литиевыми мылами. Они имеют очень высокую температуру каплепадения (около +200 °С), исключительно влагостойки и работоспособны практически в любых нагрузочных и тепловых режимах, что позволяет использовать их практически везде, где требуется пластичная смазка.


© Михаил Ожерельев

Также в качестве загустителя могут применяться углеводороды (парафин, церезин, петролатум) или неорганические соединения (глины, силикагели). Глиняный загуститель, в отличие от мыльного, не размягчается при высоких температурах, поэтому его часто можно найти в составе тугоплавких смазок. А вот углеводородные загустители используются в основном для производства консервационных материалов, поскольку их температура плавления не превышает 65 °С.

Помимо основы и загустителя в состав смазки включают присадки, наполнители и модификаторы структуры. Присадки практически те же, что используются в товарных маслах (моторных и трансмиссионных), они представляют собой маслорастворимые поверхностно-активные вещества и составляют 0,1–5% от массы смазки. Особое место в пакете присадок занимают адгезионные, то есть клейкие компоненты - они усиливают действие загустителя и повышают способность смазки держаться на металле. Чтобы подстраховать работу смазки в предельном тепловом и нагрузочном режиме, иногда в нее вводят твердые и нерастворимые в масле наполнители - как правило, дисульфит молибдена и графит. Такие добавки обычно придают смазке специфический цвет, например, серебристо-черный (дисульфит молибдена), синий (фталоцианид меди), черный (углерод-графит).


© Михаил Ожерельев

Свойства и стандарты

Область применения смазки определяется большим набором показателей, среди которых предел прочности при сдвиге, механическая стабильность, температура каплепадения, термическая стабильность, водостойкость и т.п. Но роль наиболее важных характеристик отводится температуре каплепадения и уровню пенетрации. По сути, именно эта пара является выходным параметром для оценки смазки.

Температура каплепадения показывает, до каких пределов можно нагреть смазку, чтобы она не превратилась в жидкость и, следовательно, не потеряла своих свойств. Измеряют ее очень просто: кусочек смазки определенной массы нагревают равномерно со всех сторон, плавно повышая температуру до тех пор, пока с него не упадет первая капля. Граница каплепадения смазки должна быть на 10–20 градусов выше максимальной температуры нагрева узла, в котором она используется.


© Михаил Ожерельев

Термин «пенетрация» (проникновение) своим появлением обязан методу измерения - показатель густоты полужидких тел определяется в приборе, называемом пенетрометром. Для оценки консистенции металлический конус стандартного размера и формы под собственным весом в течение 5 с погружают в смазку, нагретую до температуры 25°С. Чем мягче смазка, тем глубже войдет в нее конус и тем выше ее пенетрация, и наоборот, более твердые смазки характеризуются меньшим числом пенетрации. К слову, подобные тесты используются не только при производстве смазок, но и в лако­красочном бизнесе.


© Михаил Ожерельев

Теперь о стандартах. Согласно общепринятой классификации смазки принято различать по области применения и густоте. В соответствии с областью применения смазки делятся на четыре группы: антифрикционные, консервационные, уплотнительные и канатные. Первая группа разделена на подгруппы: смазки общего назначения, многоцелевые смазки, термостойкие, низкотемпературные, химически стойкие, приборные, автомобильные, авиационные. Применительно к транспортной сфере наибольшее распространение получили антифрикционные смазки: многоцелевые (Литол-24, Фиол-2У, Зимол, Лита) и специальные автомобильные (ЛСЦ-15, Фиол-2У, ШРУС-4).


© Михаил Ожерельев

Чтобы различать продукты по консистенции, во всем мире используется американ­ская классификация NLGI (National lubricating Grease Institute), которая делит смазки на 9 классов. Критерием деления является уровень пенетрации. Чем выше класс, тем гуще продукт. Пластичные смазки, используемые в автомобилях, чаще относятся ко второму, реже - к первому классу. Для полужидких продуктов, рекомендованных к использованию в системах централизованной смазки, выделено два обособленных класса. Они обозначаются кодами 00 и 000.


© Михаил Ожерельев

Раньше в нашей стране наименование смазок устанавливали произвольно. В результате одни смазки получили словесное название (Солидол-С), другие - номерное (№158), третьи - обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-242). В 1979 году был введен ГОСТ 23258-78, согласно которому наименование смазки должно состоять из одного слова и буквенно-цифрового индекса (для различных модификаций). Отечественные нефтехимики этого правила придерживаются и сегодня. Что же касается импортной продукции, то за рубежом в настоящее время отсутствует единая для всех производителей классификация по эксплуатационным показателям. Большинство европейских производителей руководствуются немецким стандартом DIN-51 502, который устанавливает обозначение пластичных смазок, отображающее сразу несколько характеристик: назначение, тип базового масла, набор присадок, класс NLGI и диапазон рабочих температур. Например, обозначение K PHC 2 N-40 говорит о том, что данная пластичная смазка предназначена для смазывания подшипников скольжения и качения (литера К), содержит в своем составе противоизносные и противозадирные присадки (Р), произведена на базе синтетического масла (НС) и относится ко второму классу консистенции по NLGI (цифра 2). Максимальная температура применения такого продукта составляет +140 °С (N), а нижний эксплуатационный предел ограничен планкой –40 °С.


© Михаил Ожерельев

Некоторые мировые производители применяют свои собственные структуры обозначений. Скажем, система обозначения пластичных смазок Shell имеет следующую структуру: марка - «суффикс 1» - «суффикс 2» -
класс NLGI. К примеру, продукт Shell Retinax HDX2 расшифровывается как смазка с очень высокими эксплуатационными характеристиками для агрегатов, работающих в чрезвычайно тяжелых условиях (HD), содержащая дисульфит молибдена (X) и относящаяся ко второму классу консистенции NLGI.

Часто на этикетках зарубежных продуктов присутствует сразу два обозначения: собственная маркировка и код по стандарту DIN. По аналогии с жидкими маслами наиболее полные требования к эксплуатационным материалам отражаются в спецификациях автопроизводителей или производителей компонентов (Willy Vogel, British Timken, SKF). Номера соответствующих допусков также наносятся на этикетку смазочного материала рядом с обозначением его эксплуатационных свойств, но основная информация о рекомендованных к применению продуктах и сроках их замены содержится в руковод­стве по обслуживанию транспортного средства.


© Михаил Ожерельев

Смазки разных производителей (даже одинакового назначения) смешивать нельзя, так как они могут содержать разные по химическому составу присадки и другие компоненты. Также нельзя смешивать продукты с различными загустителями. Например, при смешивании литевой смазки (Литол-24) с кальциевой (солидол) смесь получает самые худшие эксплуатационные свойства. Из предлагаемых на рынке автомобильных пластичных смазок наиболее целесообразно выбирать те, которые рекомендованы изготовителем автомобиля.

2. Назначение, состав и получение пластичных смазок
Пластичные смазки предназначены для применения в узлах трения, где масло не удерживается или невозможно обеспечить непрерывное пополнение его запаса.
Пластичные (консистентные) смазки - особый класс смазочных материалов, которые получают загущением смазочных масел (дисперсионная среда) твердыми веществами (дисперсионная фаза). В этой системе твердая фаза (загуститель) образует структурный каркас, который удерживает в своих ячейках жидкую дисперсионную среду. В качестве такого структурного каркаса используются жирные соли мягких металлов.

3. Но могут применяться и мыло, парафин или пигмент. Название металла, как правило, переносят на саму смазку - натриевая, кальциевая, литиевая, бариевая, магниевая, цинковая, стронциевая и т. д.
Если на долю дисперсионной среды (масло) приходится основная масса (70-95 %), то дисперсионная фаза (загуститель) составляет 5-30 %.
При заданных условиях такая смазка находится в пластичном мазеобразном состоянии. При достижении определенной температуры предела пластичная смазка плавится и расслаивается.
Пластичные смазки не стекают с наклонных и вертикальных поверхностей и удерживаются в узлах трения при действии высоких нагрузок и инерционных сил.

4. Пластичные смазки нашли широкое применение в качестве защитных, герметизирующих, антифрикционных и противоизносных материалов.
На долю дисперсной среды в пластичных смазках приходится 70-95 % массы, как правило, это минеральные масла. Для получения большего интервала рабочих температур используют такие синтетические жидкости, как силиконы и диэфиры.
Кроме дисперсионной среды и загустителя смазки могут содержать стабилизаторы и модификаторы коллоидной структуры, присадки и наполнители для придания или улучшения функциональных свойств, а также красители. Действие смазки гораздо сложнее, чем масла. Поэтому для грамотного выбора того или иного состава необходимо знать его свойства.

5.Эксплуатационные свойства пластичных смазок. Температура каплепадения
В пластичной смазке при нагревании происходит необратимый процесс разрушения кристаллического каркаса, и смазка становится текучей. Переход из пластичного состояния в жидкое условно выражают температурой каплепадения, т. е. температурой, при которой из стандартного прибора при нагревании падает первая капля смазки. Температура каплепадения смазок зависит от вида загустителя и его концентрации.

6. По температуре каплепадения смазки делят на тугоплавкие (Т), среднеплавкие (С) и низкоплавкие (Н). Тугоплавкие смазки имеют температуру каплепадения выше 100 °С; низкоплавкие - до 65 °С. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру рабочего узла на 15-20 °С.

7. Механические свойства
Механические свойства смазок характеризуются пределом прочности смазок при сдвиге и пенетрацией.
Предел прочности - это минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого. При меньших нагрузках пластичные смазки сохраняют свою внутреннюю структуру и упруго деформируются подобно твердым телам, а при больших давлениях структура разрушается, и смазка ведет себя как вязкая жидкость.

8. Предел прочности зависит от температуры смазки - с повышением температуры он уменьшается. Этот показатель характеризует способность смазки удерживаться в узлах трения, противостоять сбросу под влиянием инерционных сил. Для рабочих температур предел прочности не должен быть ниже 300-500 Па.
Пенетрация - условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора за 5 с. Пенетрация - показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации.

9. В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.
Число пенетрации характеризует густоту смазок и колеблется от 170 до 420.

10. Эффективная вязкость
Вязкость смазки при одной и той же температуре может иметь различное значение, которое зависит от скорости перемещения слоев относительно друг друга. С увеличением скорости перемещения вязкость уменьшается, так как частицы загустителя ориентируются по ходу движения и оказывают меньшее сопротивление скольжению. Увеличение концентрации и степени дисперсности загустителя приводят к увеличению вязкости смазки. Вязкость смазки зависит от вязкости дисперсной среды и технологии приготовления смазки.

11. Вязкость смазки при определенной температуре и скорости перемещения называется эффективной вязкостью и рассчитывается по формуле
η эф = τ/D
где т - напряжение сдвига; D - градиент скорости сдвига.
Показатель вязкости имеет большое практическое значение. Он определяет возможность подачи смазок и заправки в узлы трения с помощью различных заправочных устройств. Вязкость смазки определяет также расход энергии на ее перекачку при перемещении смазанных деталей.

12. Коллоидная стабильность
Коллоидная стабильность - это способность смазки сопротивляться расслаиванию.
Коллоидная стабильность зависит от структурного каркаса смазки, который характеризуется размерами, формой и прочностью связей структурных элементов. Следовательно, на коллоидную стабильность оказывает влияние вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать.
Выделение масла из смазки увеличивается с повышением температуры, увеличением давления под действием центробежных сил.

13. Сильное выделение масла недопустимо, так как смазка может ухудшить или потерять полностью свои смазочные свойства. Для оценки коллоидной стабильности используют различные приборы, способные выпрессовывать масло под действием нагрузки.
Водостойкость
Водостойкость - это способность смазки противостоять размыву водой. Растворимость смазки в воде зависит от природы загустителя. Наилучшей водостойкостью обладают парафиновые, кальциевые и литиевые смазки. Натриевые и калиевые - водорастворимые смазки.

14. Классификация, применение и обозначения пластичных смазок
Пластичные смазки подразделяются на четыре группы:
- антифрикционные - для снижения износа и трения скольжения сопрягаемых деталей;
- консервационные - для предотвращения коррозии при хранении, транспортировке и эксплуатации;
- канатные - для предотвращения коррозии и износа стальных канатов;
- уплотнительные - для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и любых подвижных соединений.

15. Антифрикционные смазки являются самой многочисленной группой пластических смазок и делятся на следующие подгруппы :
С - общего назначения;
О - для повышенной температуры;
М - многоцелевые;
Ж - термостойкие (узлы трения с рабочей температурой >150 °С);
Н - низкостойкие (узлы трения с рабочей температурой <40 °С);
И - противозадирные и противоизносные;
X - химически стойкие;
П - приборные;
Т - редукторные (трансмиссионные);

16. Д - приработочные пасты;
У - узкоспециализированные (отраслевые).
Консервационные смазки обозначаются буквой «З», канатные - «К».
Уплотнительные смазки имеют три подгруппы:
А - арматурные (для манжет);
Р - резьбовые;
В - вакуумные (для уплотнений в вакуумных системах).
В зависимости от применения смазки делят на: общего назначения, многоцелевые и специализированные.

17. Смазки общего назначения
Кальциевые смазки имеют общее название - солидолы. Это самые массовые и дешевые антифрикционные смазки, относятся к среднеплавким. Кальциевые смазки выпускаются следующих марок: солидол Ж, прессолидол Ж, солидол С или прессолидол С.
Солидол С работоспособен при температуре от -20 до 65 °С. Прессолидол С - от -30 до 50 °С.
Натриевые и натриево-кальциевые смазки работают в более широком интервале температур (от -30 до 110 °С) и применяются главным образом в подшипниках качения.

18. Например, смазка автомобильная ЯНЗ-2 почти нерастворима в воде, но при длительном применении во влажной среде эмульгируется. Вытесняется универсальной смазкой Литол-24.
Универсальные смазки водостойки и работоспособны в широком интервале температур, скоростей и нагрузок. Обладают хорошими консервационными свойствами. Загустителями для них служат литиевые мыла.
Литол-24 - можно использовать в качестве единой автомобильной смазки, она работоспособна при температуре от -40 до 130 °С.

19. Фиол-1, Фиол-2, Фиол-3 - смазки аналогичны Литол-24, но более мягкие, лучше удерживаются в узлах трения.
Известные во всем мире бренды Castrol и BP теперь в ассортименте компании "Алессио-Авто". Моторные масла, тормозные жидкости, пластические смазки, охлаждающие жидкости, трансмиссионные масла, смазки, специальные продукты. Специализированные смазки
К специализированным смазкам относятся около 20 марок смазок разного качества. Они наиболее эффективно используются в качестве несменяемых и непополняемых смазок в процессе эксплуатации.

20. Графитная - применяется преимущественно в открытых узлах.
AM карданная - для карданных шарниров равных угловых скоростей (Тракта, Рцеппа, Вейса) грузовых автомобилей, склонна к вытеканию из узлов.
Шрус-4 - для шарниров равных угловых скоростей (типа Бирфильд) легковых автомобилей; работоспособна при температуре от -40 до 130 °С, водостойка, имеет высокие противозадирные и противоизносные свойства.
ШРБ-4 - для герметизированных шарниров подвесок и рулевого управления, диапазон рабочих температур от -40 до 130 °С.

21. ЛСЦ-15 - применяется в шлицевых соединениях, шарнирах и осях приводов педалей, стеклоподъемниках; обладает высокой водостойкостью, адгезией (прилипаемостью) к металлам, хорошими консервационными свойствами.
Термостойкие смазки
Предел работоспособности термостойких смазок - от 150 до 250 °С.
Униол-3М - водостоек, обладает хорошей коллоидной стабильностью и противозадирными свойствами.
ЦИАТИМ-221 - можно применять при температурах от -60 до 150 °С, химически стабильна к резине и полимерным материалам.

22. ЛСЦ-15 - применяется в шлицевых соединениях, шарнирах и осях приводов педалей, стеклоподъемниках; обладает высокой водостойкостью, адгезией (прилипаемостью) к металлам, хорошими консервационными свойствами.

23. Морозостойкие смазки
Морозостойкие смазки работоспособны во всех узлах трения в условиях Крайнего Севера и Арктики.
Зимол - морозостойкий аналог смазки Литол-24.
Лита - многоцелевая морозостойкая рабоче-консервационная смазка, водостойкая.

Таблица 4.1 – Классификация пластичных смазок по числу пенетрации

Класс

Диапазон пенетрации

Визуальная оценка консистенции

85…115

Очень мягкая, как очень вязкое масло

Вазелинообразная

Почти твёрдая

Очень твёрдая мылообразная

Коллоидная стабильность. Способность удерживать масло, сопротивляться его выделению при хранении и эксплуатации характеризует коллоидную стабильность смазок. Выделение масла может быть самопроизвольным вследствие структурных изменений в смазке, например, под действием собственной массы, и может ускоряться или замедляться под действием температуры, давления и др. факторов. Слишком большое выделение масла в процессе работы - более 30 % - приводит к резкому упрочнению смазки и нарушает её нормальное поступление к контактируемым поверхностям.

Коллоидная стабильность зависит от размеров, формы и прочности связей структурных элементов. Большое влияние оказывает вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать из объёма смазки.

Коллоидная стабильность оценивается по объёму масла, отпрессованного из смазки при комнатной температуре в течении 30 минут и выражается в % - для смазок она не должна превышать 30 %. Проводят это на разных приборах, но самым простым и удобным является механическое отпрессовывание масла из некоторого объёма, помещенного между слоями фильтровальной бумаги.

Химическая стабильность . Под химической стабильностью понимают стойкость смазок против окисления кислородом воздуха, хотя в широком смысле - это отсутствие изменения свойств смазок под воздействием на них химических реагентов (кислот, щелочей, кислорода и т.д.). Окисление приводит к образованию и накоплению в смазках кислородосодержащих, активных веществ, к изменению реологических свойств (как правило, разупрочнению), ухудшению коллоидной стабильности, понижению температуры каплепадения, смазочной способности и т.д.

Стабильность против окисления особенно важный показатель для смазок, которые

Заправляют в узлы трения 1...2 раза в течение 10...15 лет;

Работают при высоких температурах;

Работают в тонких слоях;

В контакте с цветными металлами.

Медь, бронза, олово, свинец и ряд других металлов и сплавов ускоряют окисление смазок.

Об образовании и накоплении в смазке продуктов окисления судят по данным ИК-спектроскопии. Исследования проводят методом ускоренного окисления под действием высокой температуры в присутствии катализаторов.

Имеется несколько способов повышения стойкости смазок против окисления:

Подбор масляной основы;

Выбор типа и концентрации загустителя;

Варьирование технологическими режимами производства;

Введение антиокислительных присадок (амино- и фенолосодержащих соединения, фосфор- и серосодержащие органические продукты и т.д.).

Термическая стабильность . Способность смазок не изменять свои свойства и прежде всего не упрочняться при кратковременном воздействии высоких температур характеризует их термическую стабильность. Особенно подвержены упрочнению вплоть до потери пластичности при повышенных температурах смазки из мыл синтетических жирных кислот, натриевые, натриево-кальциевые и в меньшей степени кальциевые. Упрочнение затрудняет поступление смазки к узлу трения, ухудшает его адгезионные свойства. Особенность термоупрочнения - полная и многократная обратимость - перетирание затвердевшей смазки приводит к восстановлению её первоначальных свойств.

Испаряемость - один из показателей смазок, определяющих стабильность состава при хранении и в эксплуатации. Испарение масла из-за высоких температур, вакуума и отсутствия частой смены приводит к повышению концентрации загустителя, что сопровождается увеличением предела прочности и ухудшением низкотемпературных свойств: на поверхности образуются корки и трещины, снижается защитная способность.

Скорость испарения зависит от условий хранения и эксплуатации, фракционного состава масла. Чем тоньше слой и больше его поверхность, тем выше испаряемость. Тип и концентрация загустителя мало влияют на испаряемость масла.

Выражается испаряемость в %. Определяется измерением потери массы образца, который выдерживают в стандартных условиях в течение определённого времени при постоянной температуре.

Температура каплепадения. Минимальная температура, при которой происходит падение первой капли смазки, нагреваемой в приборе Уббелоде. Эта температура зависит от условий оценки и не всегда определяется одними и теми же свойствами смазок. Она условно характеризует температуру плавления загустителя. Считается, что температура каплепадения должна быть на 15...20°С выше максимальной температуры применения смазки. Однако температура каплепадения не всегда позволяет правильно судить о высокотемпературных свойствах смазки. Например, температура каплепадения литиевых смазок лежит в пределах 170...200°С, а работоспособны они до 130°С.

Микробиологическая стабильность. Под действием микроорганизмов, попавших в смазку и развившихся в ней, происходит изменение состава и свойств смазок. При развитии микроорганизмы потребляют те или иные компоненты смазки, продукты обмена накапливаются и, как правило, увеличивают кислотность смазки. При этом происходит разупрочнение и изменение эксплуатационных свойств.

Для борьбы с микроорганизмами в смазки вводят антисептики - органические вещества, например, бензойную и салициловую кислоты, фенолы, производные ртути, олова и др. Бактерицидными действиями обладают некоторые антиокислительные, противоизносные присадки и ингибиторы коррозии.

Радиационная стойкость. Воздействие на смазки излучений высоких энергий приводит к глубоким изменениям их структуры и свойств. В значительной степени стойкость смазок к облучению зависит от состава масла, на основе которого они приготовлены. По дисперсионной стойкости смазки располагаются следующим образом в порядке возрастания: кремнийорганические жидкости -сложные эфиры - нефтяные масла - простые эфиры. Смазки в зависимости от типа загустителя при облучении могут приобретать «наведённую» радиоактивность. Наиболее легко радиоактивность приобретают натриевые смазки.

Ассортимент смазок

Автомобильный транспорт один из основных потребителей пластичных смазок. Здесь применяют антифрикционные, защитные и уплотнительные смазки. Более всего при эксплуатации расходуются антифрикционные смазки.

Основными узлами трения являются:

- подшипники качения ступиц колёс;

- подшипники качения насоса системы охлаждения (раньше);

- шарниры рулевого управления;

- шаровые опоры независимой подвески;

- шарниры карданные равных и неравных угловых скоростей и т.д.

Ассортимент антифрикционных смазок промышленного производства превышает 100 наименований. В инструкциях по эксплуатации для одних и тех же узлов разных автомобилей рекомендуются различные смазки.

Схема маркировки пластичных смазок представлена на рисунке 4.1.

Рисунок 4.1 – Схема маркировки пластичных смазок по ГОСТ 23258–78

Пояснение к рисунку 4.1:
1 – подгруппа по назначению (таблица 4.2) (например М – многоцелевая);
2 – тип загустителя (таблица 4.3) (например Ли – литиевое мыло);
3 – температурный диапазон применения смазки;
4 – тип дисперсной среды (у – синтетические углеводороды, к – кремнийорганические жидкости, э – сложные эфиры, ф – фторсилоксаны, н – нефтяное масло, ж – галогеноуглеродные жидкости, а – перфторалкилполиэфиры, «-» – нефтяная основа, п – прочие масла и жидкости);
5 – твердые добавки (г – графит, д – дисульфид молибдена, с – порошки свинца, м – порошки меди, ц – порошки цинка, т – прочие твердые добавки).
6 – число пенетрации (класс консистенции) (по возрастанию густоты изменяется от 000 до 7).
Пример маркировки: СКа 2/7-2 – С – антифрикционная смазка общего назначения, применяемая при температуре до 70°С (солидол), Ка – загуститель – калиевое мыло, 2/7 – рекомендуемый температурный диапазон применения от -20°С до +70°С, «-» – смазка приготовлена на нефтяной основе, 2 – число пенетрации (класс консистенции) (пенетрация при 25°С составляет 265…295).

Таблица 4.2 — Классификация пластичных смазок по назначению

Основное назначение

Подгруппа

Область применения

Антифрикционные

Для снижения износа и трения скольжения сопряженных деталей

Общего назначения для обычных температур (солидолы)

Узлы трения с рабочей температурой до 70°С

Общего назначения для повышенных температур

Узлы трения с рабочей температурой до 100°С

Многоцелевые

Узлы трения с рабочей температурой от -30 до 130°С в условиях повышенной влажности

Термостойкие

Узлы трения с рабочей температурой 150°С и выше

Морозостойкие

Узлы трения с рабочей температурой -40°С и ниже

Противозадирные и противоизносные

Подшипники качения при контактных напряжениях выше 2500 МПа и скольжения при нагрузках выше 150 МПа

Химически стойкие

Узлы, контактирующие с агрессивными средами

Приборные

Узлы трения приборов и точных механизмов

Редукторные

Зубчатые и винтовые передачи всех видов

Приработочные (дисульфидмолибденовые, графитные и другие пасты)

Сопряженные поверхности для облегчения сборки, предотвращения задиров и ускорения приработки

Узкоспециальные (отраслевые)

Узлы трения, смазки для которых должны удовлетворять дополнительным требованиям (прокачиваемость, эмульгируемость, искрогашение и т.д.) автомобильные железнодорожные индустриальные

Брикетные

Узлы и поверхности скольжения с устройствами для использования смазки в виде брикетов

Консервационные

Для предотвращения коррозии при хранении, транспортировании и эксплуатации

Металлические изделия, за исключением стальных канатов и в случаях, требующих консервационных масел или твердых покрытий

Канатные

Для предотвращения коррозии и износа стальных канатов

Стальные канаты и тросы, органические сердечники стальных канатов

Уплотнительные

Для герметизации, облегчения сборки и разборки арматуры; сальниковых устройств; резьбовых, разъемных и любых подвижных соединений, в то числе вакуумных систем

Арматурные

Запорная арматура и сальниковые устройства

Резьбовые

Резьбовые соединения

Вакуумные

Подвижные и разъемные соединения и уплотнения вакуумных систем

Таблица 4.3 — Типы загустителей пластичных смазок

Загуститель

Загуститель

Органические вещества:

алюминиевое

пигменты

бариевое

полимеры

калиевое

литиевое

фтороуглероды

натриевое

Неорганические вещества:

свинцовое

глины (бентонитовые)

цинковое

комплексное

силикагель

смесь мыл

Углеводороды твердые

Антифрикционные смазки

Самыми распространёнными мыльными смазками из кальциевых смазок общего назначения являются солидолы. Готовят две марки синтетического солидола – пресс-солидол С и солидол С , и две марки жирового солидола – пресс-солидол УС-1 и солидол УС-2 (УС – универсальная среднеплавкая). Жировые солидолы готовят загущением нефтяных индустриальных масел кальциевыми мылами. Солидолы нерастворимы в воде, обладают высокой коллоидной стабильностью, но не могут использоваться при температурах выше + 75 0 С и ниже – 30 0 С.

Кроме солидолов выпускают другие кальциевые гидратированные смазки – УссА , ЦИАТИМ-208 и др.

К комплексным кальциевым смазкам, изготавливаемым на нефтяных или синтетических маслах, относятся – униол-1 , униол-2 , ЦИАТИМ-221 и др. Эти смазки по сравнению с обычными мыльными смазками более термостойки: температура каплепадения у них выше 200 0 С (у солидолов 80…90 0 С), что позволяет использовать их при температурах до 160 0 С. Они обладают хорошими противоизносными и противозадирными свойствами, то есть их можно применять в тяжелонагруженных узлах. Они так же обладают хорошими защитными и противокоррозионными свойствами. К недостаткам этих смазок относится склонность к термоупрочнению.

Натриевые и натриево-кальциевые смазки. По объёму производства эти смазки занимают второе место после гидратированных кальциевых. Распространёнными натриевыми смазками являются консталины УТ-1 и УТ-2 (УТ – универсальная тугоплавкая), которые в отличии от солидолов работоспособны при температурах до 115 0 С и хорошо удерживаются при таких температурах в тяжелонагруженных узлах. Однако натриевые и натриево-кальциевые смазки растворимы в воде и, следовательно, смываются с металлических поверхностей. При низких температурах (ниже – 20 0 С) применять эти смазки не рекомендуется. Преимущественно консталины используются как железнодорожные смазки.

Среди натриево-кальциевых смазок самой массовой является смазка 1-13 . Эту смазку и её вариант 1-Л3 или ЛЗ-ЦНИИ применяют в роликовых и шариковых подшипниках.

Литиевые смазки. Эти смазки работоспособны в широком интервале температур и до – 50 0 С, нагрузок и скоростей. Их свойства стабильны во времени. К недостаткам можно отнести низкую механическуюстабильность и ограниченный верхний предел температуры – не выше 120…130 0 С. Первой литиевой смазкой была ЦИАТИТМ-201 . Сейчас выпускают: литол-24 , фиол-2 или , фиол-3 и др. Литол-24 используется в качестве единой автомобильной смазки.

Алюминиевые смазки. Наиболее распространённой является смазка АМС-1,3 . Она используется в механизмах, работающих в морской воде или соприкасающихся с ней. Относится к защитно-антифрикционным смазкам. Выпускается смазка МС-70 имеющая такие же свойства.

В ассортименте антифрикционных смазок имеются также смазки на бариевых и цинковых мылах. Бариевые смазки обладают хорошей стойкостью к воде и нефтепродуктам, повышенной химической и механической стабильностью. В шаровых шарнирах подвески и наконечниках рулевых тяг автомобилей ВАЗ применяется бариевая смазка ШРБ-4 .

В качестве антифрикционных смазок используют смазки на неорганических загустителях – силикагелевые, бентонитовые и др. У них хорошие высокотемпературные свойства, высокая химическая стабильность и удовлетворительные смазочные свойства. К их недостаткам можно отнести низкую защитную стабильность. Кселикагелевым относятсясмазки–ВНИИНП-262 ,ВНИИНП-264 ,

ВНИИНП-279 . В основном они предназначены для высокоскоростных подшипников качения, работающих в жёстких режимах трения. Смазки эти дорогие.

К бентонитовым смазкам для подшипников качения относится смазка ВНИИНП-226 .

Консервационные смазки

Ассортимент консервационных смазок значительно уступает ассортименту антифрикционных смазок. Наибольшее распространение получили углеводородные смазки. Их низкая температура плавления (40…75 0 С) позволяет наносить их на поверхность в расплавленном виде путём окунания или распыливания. Можно наносить и при помощи кисти. Предварительно поверхность очищают от следов коррозии и прочих загрязнений.

К углеводородным смазкам относятся ПВК , ГОИ-54п , УНЗ (пушечная ), вазелин технический волокнистый ВТВ-1 , ВНИИСТ-2 и др.

Смазка ПВК имеет высокую водостойкость и стабильность, низкую испаряемость, что позволяет использовать её в течение 10 лет. Недостатком её является потеря подвижности при температуре ниже – 10 0 С.

ГОИ-54п используют для защиты от коррозии машин и механизмов, работающих на открытом воздухе. Смазка сохраняет работоспособность при температуре до – 50 0 С, однако, как большинство углеводородных смазок, её не рекомендую использовать при температурах выше + 50 0 С.

Смазку ВТВ-1 применяют для смазывания клемм аккумуляторов. От смазки ПВК она отличается лучшими низкотемпературными свойствами.

ВНИИСТ-2 применяется для защиты от коррозии наземных трубопроводов.

Удовлетворительные защитные свойства имеют и некоторые мыльные смазки: АМС-1 , АМС-3 , МС-70 , ЗЭС и др.

Смазки АМС-1 , АМС-3 и МС-70 используют как антифрикционные, обладающие хорошими защитными свойствами в условиях контакта с морской водой. Они обладают высокой липкостью и водостойкостью.

Смазку ЗЭС применяют для защиты линий электропередач и другой высоковольтной аппаратуры от коррозии.

Особую группу консервационных смазок составляют канатные смазки: 39у , БОЗ-1 , торсиол-35 , торсиол-55 Е-1 и др. Они занимают промежуточное положение между консервационными и антифрикционными смазками. Предназначены эти смазки для защиты стальных канатов и тросов при эксплуатации и хранении, а так же снижать износ, уменьшать трение, предотвращать обрывы.

Уплотнительные смазки

По составу и свойствам эти смазки специфичны, что не позволяет, как правило, заменять их смазками других типов. В качестве дисперсионной среды используют касторовое масло, глицерин, синтетические масла и смеси с нефтяными. Смазки на основе касторового масла и его смеси с нефтяным или синтетическим маслом практически нерастворимы в нефтепродуктах.

Загустителями могут быть твёрдые углеводороды и неорганические продукты (силикагель, бентонит).

Большинство уплотнительных смазок содержат наполнители – графит, слюду, тальк, дисульфид молибдена, асбест, оксиды металлов и др. В уплотнительной смазке для запорной арматуры вводят 10…15 % наполнителей.

Широкое применение уплотнительные смазки нашли в резьбовых соединениях. В таких соединениях, рассчитанных на высокое давление, уплотнительные смазки подвергаются воздействию высоких контактных нагрузок. Роль самой смазки при жёстких условиях работы резьбового соединения сводится только к функции носителя наполнителя. В смазках для резьбовых соединений концентрация наполнителей, как правило, превышает 50 %.

Твёрдые смазки

Характерная особенность твёрдых смазок заключается в том, что эти материалы, так же как пластичные смазки, находятся в агрегатном состоянии, исключающем их вытекание из узла трения. Благодаря этому их можно использовать в негерметизированных узлах трения. Достоинства их перед маслами таки же, как у пластичных смазок:

- уменьшение расхода смазочного материала;

- уменьшение эксплуатационных расходов.

Твёрдые слоистые смазки. Это кристаллические вещества, обладающие смазочными свойствами: графит, дисульфиды молибдена и вольфрама, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, фталоцианин, селениды и теллуриды вольфрама, титана и пр.

Все эти смазки обладают слоистой структурой, характеризующиеся тем, что атомы, лежащие в одной плоскости – одном слое – находятся друг к другу ближе, чем в различных слоях. Это обусловливает различную прочность между атомами в различных направлениях. В результате под действием внешних сил происходит скольжение одних слоёв кристаллов относительно других. Это свойство необходимо, но недостаточно. Нужна также хорошая адгезия твёрдой смазки к материалу поверхности трения, поэтому дисульфид титана и многие алюмосиликаты (слюда, тальк и др.), обладая ярко выраженной слоистой структурой, не отличаются смазочными свойствами, так как имеют плохие адгезионные свойства с металлами.

Наиболее распространённые твёрдые слоистые смазки.

Графит обладает антифрикционными свойствами в паре трения со сталью, чугуном и хромом. Несколько хуже эти свойства с медью и алюминием. В присутствии воздуха и воднографитная смазка улучшает свои показатели. Графит адсорбируется на поверхности трения, образуя прочную плёнку, ориентированную в направлении скольжения. Наличие на поверхности металла плёнки оксидов облегчает адсорбцию графита, поэтому использование графита особенно эффективно для металлов, образующих прочную оксидную плёнку – хром, титан, несколько меньше сталь. Предел работоспособности графитной смазки равен 600 0 С. Из-за наличия свободных электронов графит обладает высокой электропроводностью, что способствует отводу электростатических зарядов и сохранению прочности смазочного слоя. С увеличение нагрузки и повышения температуры коэффициент трения графита возрастает. По стали коэффициент трения равен 0,04…0,08.

Дисульфид молибдена Мо S 2 – синевато-серый порошок с металлическим блеском, обладает хорошими адсорбционными свойствами по отношению к большинству чёрных и цветных металлов. Его смазочная способность обусловлена выраженным слоистым строением кристаллов и сильной поляризацией атомов серы в процессе трения. В отличии от графита при увеличении нагрузки и температуры коэффициент трения Мо S 2 уменьшается. Средняя величина коэффициента трения равна 0,05…0,095.

Несущая способность граничной смазочной плёнки дисульфида молибдена выше, чем у любых смазочных масел. При температуре выше 500 0 С дисульфид молибдена окисляется с выделением SO 2 . К недостаткам можно отнести высокую химическую активность, в результате чего он легко вступает в реакцию с водой и кислородом. Поэтому максимальная температура ограничена 450 0 С. Водород восстанавливает дисульфид молибдена до металла.

Дисульфид вольфрама WS 2 по сравнению с дисульфидом молибдена обладает большей термостойкостью. Предельная температура его применения равняется 580 0 С. У него больше стойкость к окислению и в 3 раза большая несущая способность. Химически дисульфид молибдена инертен, коррозионно неагрессивен, нетоксичен. Его применение ограничено высокой стоимостью. Из-за высокой плотности дисульфид молибдена мало используется в качестве добавки к маслам, так как затруднено получение однородной смеси с маслом. Рекомендуется использовать при температуре свыше 450 0 С.

Нитрид кремния имеет низкий коэффициент трения в парах со стальными деталями и некоторыми металлокерамическими материалами. Обладает хорошими механическими характеристиками и высокой термической и термоокислительной устойчивостью до 1200 0 С. Благодаря сочетанию этих качеств нитрид кремния является перспективным материалом для изготовления деталей цилиндро-поршневой группы.

Нитрид бора обладает высокой термической и термоокислительной устойчивостью. Разлагается при температуре свыше 1000 0 С.

Фталоцианины (меди C 32 H 16 N 6 Cu , железа C 32 H 16 N 8 Fe и пр.) – металлосодержащие полициклические органические соединения, обладающие крупными плоскими молекулами со слабыми межмолекулярными связями. Наряду с физической адсорбцией они образуют хемосорбированные плёнки на поверхностях металлов. Фталоцианины имеют хорошую термическую стойкость до 650 0 С, стабильны при контакте с воздухом и водой. При температурах до 300 0 С коэффициент трения у них выше, чем у графита и дисульфида молибдена, но понижается до 0,03…0,05 с увеличением температуры до 500 0 С.

Из фталоцианинов делают защитный слой на юбках поршней.

Коэффициенты трения некоторых твёрдых слоистых смазок:

Дисульфид молибдена – 0,05;

Иодистый кадмий – 0,06;

Хлористый кадмий – 0,07;

Сернокислый вольфрам – 0,08;

Сернокислое серебро – 0,14;

Иодистый свинец – 0,28;

Графит – 0,10;

Хлористый кобальт – 0,10;

Иодистая ртуть – 0,18;

Бромистая ртуть – 0,06;

Иодистое серебро – 0,25.

Твёрдые смазки могут использовать и в качестве добавок к маслам. Большинство твёрдых смазок нерастворимы в углеводородах, поэтому их вводят в моторное масло в виде коллоидных дисперсий. При этом увеличивается ресурс узлов трения и снижается вероятность задира в условиях масляной недостаточности.

Мягкие металлы. Свинец, индий, олово, кадмий, медь, серебро, золото и т.д. обладают низкой прочностью на срез. Благодаря этому они используются как твёрдые смазки в виде тонких плёнок, наносимых на более прочные основы. Плёнки этих металлов ведут себя как масло. Кроме того, они облегчают и ускоряют процесс приработки. Важным требование является высокая адгезия к материалу основы и низкая к материалу пары.

Полимерные материалы – фторопласт-4 (тефлон), капрон, нейлон, полиэтилен, политетрафторэтилен, полиамид и др. обладают смазывающими свойствами. Их наносят на поверхности трения в виде плёнок различной толщины или используют как прессованные проставки. Применение твёрдых смазок на основе полимеров ограничивается низкой термической стойкостью этих материалов, маленьким коэффициентом теплопроводности и большим коэффициентом теплового расширения.

Они имеют недостаточные механические свойства, поэтому для обеспечения прочности при средних и высоких нагрузках их армируют. Используемый для армирования материал должен быть мягче материала поверхности трения.

Композиционные смазочные материалы. Это комбинация отдельных видов твёрдых смазок, обеспечивающая оптимальное сочетание их смазывающих свойств, механической прочности и обрабатываемости.

Физически композиционные смазочные материалы представляют собой механическую смесь двух или более различных по свойствам твёрдых веществ. При этом одно вещество является основой, может образовывать структурный каркас, обеспечивающий механические свойства. Основа изготавливается из полимерных, металлических или керамических материалов. В основе зафиксирован материал, являющийся наполнителем, обеспечивающим смазочные свойства.

Полимерная основа имеет хорошие смазочные свойства, химическую инертность, более высокую, чем у металлов, усталостную прочность, малую массу, низкую чувствительность к местным нарушениям структуры – трещинам, надрезам. Наиболее термостойки материалы на основе ароматических полиамидов. Они могут длительное время эксплуатироваться при температуре до 450 0 С. Основными недостатками являются большой коэффициент термического расширения, низкие теплопроводность, термическая стойкость и стабильность.

В полимерных материалах наиболее часто в качестве наполнителей используются дисульфид молибдена, графит, нитрид бора, порошки алюминия, меди, никеля, молибдена и др.

Композиционные смазочные материалы на основе металлических материалов получают путём прессования и спекания из порошков металлов с последующей пропиткой полученной пористой основы твёрдыми слоистыми смазками, мягкими металлами или полимерами. Для получения материалов, работающих в особо тяжёлых температурных условиях, в качестве основы используют никель, кобальт и их сплавы. В качестве наполнителя применяют материалы на основе молибдена или вольфрама.

Например, для получения направляющих втулок клапанов двигателя получили распространение композиционные смазочные материалы на металлической основе, поры которых заполнены фторопластом-4 с добавками сульфидов, селенидов и теллуридов молибдена, вольфрама. Такая смазка кроме смазочного действия обеспечивает высокую несущую способность и износостойкость.

Композиционные смазочные материалы на керамической основе обладают высокой термической и химической стойкостью. Для этого используют окислы бериллия, циркония и других металлов. Основным недостатков этих материалов является их хрупкость и низкая прочность на растяжение.

Узлы трения на основе композиционных смазочных материалов могут долгое время работать без дополнительного подвода смазки, вплоть до всего моторесурса узла. Большинство композиционных смазочных материалов хорошо работают совместно с жидкими и консистентными смазками. Это обеспечивает существенное повышение надёжности двигателя, особе в режиме недостатка масла. Для вкладышей коренных и шатунных подшипников можно использовать композиции из медно-молибденового материала CuO + MoS 2 . Для подшипников распределительного вала применяют вкладыши, изготовленные из металлокерамических композиций на основе мягких металлов, насыщенных фталоцианиновой твёрдой смазкой. Изготовляют материал, состоящий из стальной ленты, на которую спеканием нанесён тонкий слой сферических частиц пористой оловянистой бронзы, пропитанной смесью фторопласта со свинцом. Сталь обеспечивает необходимую прочность подшипника, бронза – теплопроводность, смесь тефлона со свинцом – смазочные свойства.

По своей консистенции, смазочные материалы делятся на три категории:

Их применяют в узлах, где невозможно обеспечить постоянное обмывание всей поверхности трения , либо на материалах, которые препятствуют нормальной адгезии жидких масел.

К тому же, их удобно наносить на детали (закладывать внутрь) при сборке узлов, для которых не предусмотрена система орошения при работе.

Технология производства и состав

С точки зрения физических свойств, пластичные смазки, это дисперсия твердых загустителей в жидкой основе. Причем загуститель добавляется настолько высокоструктурированный, что достаточно небольшого процента: не более 10%-15%.

Стандартный состав подобных материалов, следующий:

Основа

Жидкая среда, представляет собой обычное нефтяное либо синтетическое масло, которое получают по тем же технологиям, что и обычные материалы.

Для изготовления сложных и дорогих составов исходные основы могут смешиваться, согласно техническому заданию разработчика. Объем базового жидкого масла: 70%-90%.

Нефтяные основы производятся методом гидроочистки, с помощью водорода. Таким образом снижается сернистость и удаляются асфальтовые составляющие.

Последний пункт особенно важен для повышения у готового продукта антиокислительных свойств. Органические пластичные смазки для автомобилей применяются в несильно загруженных узлах, работающих на невысоких скоростях.

Синтетическая основа, как правило, кремнийорганическая. На ее базе создаются масла для работы в нагруженных скоростных подшипниках, а также редукторах, работающих на высоких оборотах.

Загуститель (10%-15%)

Он не просто добавляется в жидкую основу, для получения однородного состава требуется определенная температура в процессе смешивания, и специальные миксеры.

Затем состав охлаждается до температуры окружающей среды, и после этого физико-химические свойства пластичных смазок не меняются. Разумеется, при соблюдении температурного режима эксплуатации.

В качестве загустителя используются высокомолекулярные соли жирных кислот (более привычное определение – мыло). В составах премиум класса применяются твердые углеводороды, а также неорганические соединения (полимеры, карбамиды, и пр.)

Присадки

Как и любой другой продукт, пластичная смазка содержит присадки. Они улучшают свойства, если базовые характеристики не удовлетворяют заказчика.

Набор свойств типичный:

  • противоизносные (противозадирные);
  • защита от коррозии;
  • соединения, препятствующие окислению самого продукта;
  • повышающие адгезию;
  • антифрикционные.

Состав наполнителей (10%-20%): тальк, графит, медный порошок мелкого помола, дисульфид молибдена, слюда, и пр.

Основное свойство пластичных смазок

Поскольку полутвердые масла должны удерживаться на поверхности изделий, важной характеристикой является температура каплепадения. Дело в том, что при вращении узлов трения, температура неотвратимо повышается.

Вместе с ней снижается вязкость пластичного материала. После критического нагрева, смазка переходит в жидкое состояние, и просто стекает с рабочей поверхности.

Учитывая критичность этих параметров, определение температуры каплепадения пластичных смазок относится к обязательной процедуре испытаний продукта.

Методика следующая:

Применение и разновидности пластичных смазок

Проведем краткий обзор популярных продуктов. В последнее время производители предлагают новейшую технологию: металлоплакирование.

Этот термин означает, что на рабочей поверхности трения образуется тончайший слой металла, обладающего низким коэффициентом трения.

В качестве примера рассмотрим популярный среди автомобилистов продукт: МС 1000 смазка пластичная металлоплакирующая.

В составе присутствует цинк, который обеспечивает противоизносные свойства. Благодаря постоянной сменяемости масла в рабочей зоне, этот слой само восстанавливается.

Blue MC 1510 высокотемпературная пластичная смазка – предназначена для высоконагруженных подшипников, работающих при высоких температурах. Этот состав выдерживает перепады от -40°C до +350°C.

Обратите внимание

Высокая температура каплепадения сохраняет подшипники при экстремальных температурах: масляная пленка не разрушается, расслоения основы и присадок не происходит.

Срок службы исчисляется сотнями тысяч километров. Благодаря уникальным свойствам, этот продукт имеет допуски ведущих автозаводов.


Пластичная смазка Molykote Longterm изготавливается с добавлением литиевых присадок. Обладает антифреттинговыми свойствами и усиленной адгезией. Такой состав позволяет использовать смазку на высоконагруженных узлах в течение длительного времени без замены.

Основное применение – муфты, подшипники, шлицевые соединения на крупных агрегатах и строительной технике. Также популярно нанесение подобных пластичных смазок на резьбовые соединения.


Графитовая смазка пластичная изготавливается методом добавления мелкодисперсного порошка в готовый состав при сохранении вязкости.

Применяемость достаточно широкая : от бытовой техники до автомобилей и промышленных агрегатов.

Неплохие антифрикционные и температурные показатели, однако графитовая смазка не выдерживает высоких оборотов рабочего узла. Поэтому перед приобретением следует изучить характеристики устройства, которое будет смазываться.

Водостойкая пластичная смазка для лодочных моторов выпускается практически всеми производителями, и обладает следующими свойствами:

  1. Высокая степень защиты от коррозии.
  2. Адгезия и стойкость нанесенного слоя выше среднего.
  3. Практически нулевая гигроскопичность, нерастворимость в воде.
  4. Способность к консервации металлических деталей.
  5. Температурные показатели не относятся к основному требованию допуска.

Виды пластичных смазок для автомобилей — видео

Итог

Пластичные смазки представлены большим разнообразием типов, однако ни одна из них не является универсальной. Для каждого агрегата следует подбирать необходимый состав продукта.

Случайные статьи

Вверх