Когда поедет российское колесо Шкондина? Как сделать реально работающий магнитный двигатель Колесо шкондина последние разработки.

Сущность изобретения: мотор-колесо содержит закрепленный на полой оси якорь 2 с магнитопроводом 3, на котором размещены две группы электромагнитов 4.1 и 4.2. Индуктор 5 подвижно закреплен на оси 1 и имеет магнитопровод 6 с постоянными магнитами 7, размещенными равномерно с чередующимися полярностями. На роторе 5 размещен распределительный коллектор, представляющий собой равномерно размещенные по окружности на изоляционном основании токопроводящие изолированные пластины 9, 10, 11. Пластины 9 и 10 сгруппированы через одну в группы и соответственно соединены между собой. Кольцевой контакт электрически соединен с одной группой пластин 9, другая группа 10 через корпус соединена с первым выводом источника регулируемого напряжения. Распределительный коллектор может располагаться как на роторе, так и на статоре. В результате реализуется обращенная конструкция с постоянными магнитами на роторе, что позволяет за счет размещения постоянных магнитов на роторе упростить конструкцию, повысить мощность и скорость за счет подвода большего тока и улучшить тепловой режим. 14 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению и может быть использовано в качестве мотора-колеса транспортных, дорожных и других передвижных средств. Известен мотор-колесо, содержащее встроенную в колесо асинхронную электрическую машину, при этом статор с магнитопроводом неподвижно закреплен на оси колеса, на магнитопроводе статора размещены магнитные элементы статора, ротор установлен подвижно по оси колеса и имеет магнитопровод с короткозамкнутыми обмотками

Известный мотор-колесо имеет ряд недостатков: плохие тепловой режим и регулировочные характеристики, высоковольтное питание, сложную систему управления и другие. Известен мотор-колесо, которое в силу наибольшей схожести по технической сущности и общим признаком выбрано за прототип, содержащее обод, ось, электропривод с электродвигателем и блок регулируемого напряжения, статор электродвигателя жестко закреплен на оси, на статоре размещен магнитопровод статора с электромагнитами статора, образованными катушками, размещенными на сердечниках, соединенных с магнитопроводом статора, или на зубцах магнитопровода статора, ротор электродвигателя с магнитопроводом ротора, установленный на оси колеса с возможностью вращения относительно статора и несущий обод, на магнитопроводе ротора размещены магнитные элементы ротора, обращенные к магнитным элементам статора так, что магнитные элементы статора и ротора имеют магнитное взаимодействие, распределительный коллектор, токосъемники с минимум двумя элементами токосъема Его недостатками является сложность в силу размещения электромагнитов на роторе, недостаточные мощности и скорость в силу невозможности подачи большого тока в катушки ротора через щетки, недостаточно хороший тепловой режим за счет недостаточного воздушного охлаждения постоянных магнитов (так как они неподвижны). Цель изобретения увеличение мощности и скорости вращения, улучшение теплового режима и повышение надежности. На фиг. 1 изображен мотор-колесо с группами электромагнитов на статоре; на фиг. 2 схема электрических элементов для рекуперации электроэнергии; на фиг. 3 схематично электрическое соединение. Мотор-колесо с группами электромагнитов на статоре и одним кольцевым контактом содержит закрепленный на полой оси 1 якорь (статор) 2 с магнитопроводом 3, на котором размещены группы (две) электромагнитов 4.1 и 4.2. Индуктор (ротор) 5 подвижно закреплен (на подшипниках, не показано) на оси 1 и имеет магнитопровод 6 с постоянными магнитами 7, размещенными равномерно с чередующимися полярностями. На роторе 5 размещен распределительный коллектор, представляющий собой равномерно размещенные по окружности на изоляционном основании 8 токопроводящие изолированные пластины 9, 10 и 11. Пластины 9 и 10 сгруппированы через одну в группы и соответственно электрически соединены между собой. Дополнительные пластины 11 находятся между ними (и могут быть нетокопроводными). Кольцевой контакт 12 электрически соединен с одной группой пластин 9, другая группа 10 через корпус соединена с первым выводом источника регулируемого напряжения 13. На якоре 2 закреплен дополнительный токосъемник 14, элемент 15 которого имеет электрический контакт с кольцевым контактом 12 и электрически соединен с другим выводом блока регулируемого напряжения 13. На якоре 2 жестко закреплены токосъемники 16.1 и 16.2 групп электромагнитов, элементы которых 16.1.1, 16.1.2, 16.2.1 и 16.2.2 имеют электрический контакт с пластинами распределительного коллектора и электрически соединены с выводами соединений катушек соответствующих групп электромагнитов 4.1 и 4.2. Постоянные магниты и электромагниты в группах размещены равномерно с угловыми расстояниями между их серединами 360 о /8 45 о. Группы электромагнитов смещены (в данном случае на 22,5 о) для обеспечения трогания с места и плавности движения. Мотор-колесо работает следующим образом. При включении блока регулируемого напряжения 13 напряжение подается на пластины 10 через корпус и 9 через элемент 15 дополнительного токосъемника 14 и кольцевой контакт 12. С пластин 9 и 10 напряжение подается на группу электромагнитов 4.1 через элементы 16.1.1 и 16.1.2 токосъемника 16.1. За счет электромагнитных сил притягивания и отталкивания постоянных магнитов и электромагнитов индуктор 5 приходит во вращение. Когда элементы токосъемника 16.2 другой группы электромагнитов оказываются на пластинах 9 и 10 в создании сил электромагнитного взаимодействия начинают участвовать электромагниты следующей группы 4.2, а когда элементы 16.1.1 и 16.1.2 оказываются на дополнительных пластинах 11, то только группа 4.2 создает вращающий момент. Таким образом группы 4.1 и 4.2 поочередно (а в одном такте вместе) создают вращающий момент, величина которого (а, следовательно, и скорость) зависит от напряжения источника 13. К изложенному необходимо добавить, что угловые расстояния между элементами токосъема одного токосъемника кратно нечетному числу для подачи на выводы соединения катушек электромагнитов напряжения от блока 13. При этом, когда элементы одного токосъемника находятся посередине пластин 9 и 10, то элементы другого посередине 11, и наоборот;

Группы сдвинуты на угловое расстояние /2, так как имеют место две группы электромагнитов, при N группах сдвиг равен /N, а в общем случае может быть произволен. Увеличение числа групп увеличивает среднюю мощность и уменьшает рывкообразность;

Целесообразно число магнитов выбирать четным и в зависимости от диметра в диапазоне 20-36. В моторе-колесах по пунктам:

2 формулы имеет место два кольцевых контакта, что позволяет избежать электрического соединения через "корпус";

4 формулы введена дополнительная возможность рекуперации за счет снятия энергии с промежуточных секций, введенных между секциями 9 и 10. Конструкции таких мотор-колес отличаются от предыдущих конструкций усложнением распределительного коллектора. На фиг. 2 представлен схематический рисунок мотора-колеса с рекуперацией электроэнергии. Оно дополнительно имеет накопительный контакт 17, размещенный концентрично к контакту 12, накопительный токосъемник 18 с его элементом 19, имеющим электрический контакт с выводом накопительного блока 20. Посередине пластин 11 размещены промежуточные пластины 21, изолированные от них и сгруппированные в две группы: одна соединена с контактами 17, другая через корпус с вторым выводом блока 20. Рекуперация осуществляется следующим образом: когда элементы токосъема 16.2.1 и 16.2.2 находятся на промежуточных пластинах 21 (фиг. 3) замыкается электрическая цепь с блоком 20, и за счет изменения магнитного потока в сердечниках электромагнитов индуцируемая в их катушках ЭДС заряжает блок 20. Блок 20 представляет собой в простейшем случае подключенный через диодный мост аккумулятор. Размещение электромагнитов в группах и постоянных магнитов по окружности индуктора равномерно позволяет получить максимальную мощность. Выбор одного или двух кольцевых (накопительных) контактов зависит в каждом конкретном случае от возможности осуществления электрического соединения через корпус. Выполнение индуктора или якоря с двумя магнитопроводами или расположением магнитных элементов с их двух сторон позволяет добиться увеличения мощности. Таким образом предлагаемое изобретение обеспечивает значительное увеличение мощности и повышение надежности и позволяет создать новую конструкцию мотора-колеса.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. МОТОР-КОЛЕСО, содержащее обод, ось, электропривод, состоящий из источника регулируемого напряжения и электродвигателя, содержащего индуктор с постоянными магнитами, размещенными равномерно на поверхности его магнитопровода, якорь с магнитопроводом и катушками обмотки, которые расположены по окружности магнитопровода по меньшей мере одной группой и размещены в группах так, что угловое расстояние между осями любых двух катушек кратно угловому расстоянию при этом любые две катушки одной группы создают противоположно направленные магнитные потоки, если угловое расстояние между их осями кратно нечетному числу a и одинаково направленные, если это расстояние кратно четному числу a группы катушек смещены друг относительно друга таким образом, что когда оси катушек как минимум одной группы совпадают с осями постоянных магнитов, оси катушек как минимум одной другой группы не совпадают с осями постоянных магнитов, токосъемники для каждой группы катушек каждой из которых с минимум двумя элементами токосъема, распределительный коллектор, выполненный с возможностью углового смещения относительно постоянных магнитов и образованный расположенными по его окружности изолированными токопроводящими основными пластинами, соединенными электрически через одну друг с другом, образуя две группы основных пластин, при этом ширина любого элемента токосъема меньше расстояния между любыми двумя основными пластинами, отличающееся тем, что, с целью улучшения регулировочных свойств, увеличения мощности и повышения надежности, индуктор электродвигателя закреплен на ободе колеса, якорь закреплен на оси колеса, распределительный коллектор расположен на индукторе, токосъемники расположены на якоре, постоянные магниты размещены так, что угловые расстояния между осями любых двух магнитов кратно угловому расстоянию a при этом любые два постоянные магниты имеют противоположную полярность, если угловое расстояние a равно нечетному числу, и одинаковую если четному числу, установлены дополнительный токосъемник, закрепленный на якоре и содержащий минимум один элемент токосъема, и минимум один кольцевой контакт, закрепленный на индукторе и соединенный с соответствующей одной группой основных пластин распределительного коллектора, каждый из элементов токосъема каждого токосъемника электрически соединен с соответствующим одним выводом катушек обмотки, другой с другим их выводом, при этом когда оси катушек обмотки любой одной группы находятся посредине между осями соответствующих постоянных магнитов, элементы токосъема токосъемника, соответствующего этой группе катушек, имеют электрический контакт с основными пластинами, которые электрически соединены с разными выводами источника регулируемого напряжения. 2. Мотор-колесо по п.1, отличающееся тем, что в конструкции электродвигателя с двумя кольцевыми контактами дополнительный токосъемник содержит два элемента токосьема, электрически соединенные с разными выводами источника регулируемого напряжения и установленные с возможностью электрического контакта с соответствующим кольцевым контактом, каждый из которых соединен электрически с соответствующей одной группой основных пластин. 3. Мотор-колесо по п.1, отличающееся тем, что в конструкции электродвигателя с одним кольцевым контактом дополнительный токосъемник содержит один элемент токосъема, электрически соединенный с одним из выводов источника регулируемого напряжения и установленный с возможностью электрического контакта с кольцевым контактом, электрически соединенным с одной группой основных пластин, а вторая группа основных пластин имеет электрическое соединение с другим выводом источника регулируемого напряжения. 4. Мотор-колесо по пп.1 3, отличающееся тем, что дополнительно введены накопительный блок (аккумулятор), минимум один накопительный контакт, выполненный в виде токопроводного кольца, накопительный токосъемник с минимум одним элементом токосъема и токопроводящие промежуточные пластины, каждая из которых размещена между двумя соседними основными пластинами, соединенные электрически через одну друг с другом, образуя две группы промежуточных пластин. 5. Мотор-колесо по п.4, отличающееся тем, что в конструкции с одним накопительным контактом и одним элементом накопительного токосъемника накопительный контакт размещен на индукторе и электрически соединен с одной группой промежуточных пластин, вторая группа которых имеет электрическое соединение с одним выводом накопительного блока, второй вывод которого соединен электрически с элементом токосъема накопительного токосъемника, размещенного на якоре, имеющим электрический контакт с накопительным контактом. 6. Мотор-колесо по п.4, отличающееся тем, что в конструкции с двумя накопительными контактами и двумя элементами накопительного токосъемника элементы токосъема накопительного токосъемника электрически соединены с соответствующими выводами накопительного блока и имеют электрический контакт с соответствующими накопительными контактами, размещенными на индукторе и электрически соединенными с соответствующими группами промежуточных пластин. 7. Мотор-колесо по п. 4, отличающееся тем, что в конструкции с одним накопительным контактом и одним элементом накопительного токосъемника накопительный контакт размещен на якоре и электрически соединен с одним из выводов накопительного блока, второй вывод которого имеет электрическое соединение с одной группой промежуточных пластин, вторая из которых электрически соединена с элементом накопительного токосъемника, размещенного на индукторе, имеющим электрический контакт с накопительным контактом. 8. Мотор-колесо по п.4, отличающееся тем, что в конструкции с двумя накопительными контактами и двумя элементами накопительного токосъемника накопительные контакты размещены на якоре и электрически соединены с соответствующими выводами накопительного блока, элементы накопительного токосъемника имеют электрический контакт с соответствующими накопительными контактами и электрически соединены с соответствующими группами промежуточных пластин. 9. Мотор-колесо по пп.1 8, отличающееся тем, что катушки обмотки в любой группе размещены равномерно с чередующимися по окружности полюсами, при этом угловые расстояния между осями двух любых соседних катушек обмотки равны между собой и равны a, а = 360 /m, где m натуральное четное число, равное числу катушек. 10. Мотор-колесо по пп.1 9, отличающееся тем, что индуктор снабжен вторыми магнитопроводом с постоянными магнитами, распределительным коллектором и токосъемниками с элементами токосъема, выполненными, расположенными и соединенными аналогично основным магнитопроводу, распределительному коллектору и токосъемникам. 11. Мотор-колесо по пп.1 10, отличающееся тем, что катушки обмотки расположены с двух сторон магнитопровода якоря, магнитопроводы индуктора с токосъемниками расположены по сторонам магнитопровода якоря, постоянные магниты размещены напротив катушек обмотки, а оси намагниченности постоянных магнитов параллельны оси колеса. 12. Мотор-колесо по пп.1 10, отличающееся тем, что магнитопроводы индуктора расположены по сторонам магнитопровода якоря, постоянные магниты размещены напротив катушек обмотки, а оси намагниченности постоянных магнитов параллельны оси колеса. 13. Мотор-колесо по пп.1 10, отличающееся тем, что оси намагниченности постоянных магнитов радиальны. 14. Мотор-колесо по пп.1 10, отличающееся тем, что якорь снабжен минимум одним дополнительным магнитопроводом с катушками обмотки и токосъемниками, индуктор снабжен минимум двумя магнитопроводами с постоянными магнитами и токосъемниками, выполненными, расположенными и соединенными подобно основному якорю и индуктору. 15. Мотор-колесо по пп.1 14, отличающееся тем, что токосъемники выполнены с возможностью углового смещения относительно катушек обмотки.

Тема, с которой хочу ознакомить вас уважаемый читатель сегодня, возникла внезапно. Во время проведения Х международной специализированной выставки по энергоэффетивности и ВИЭ-2017 в МВЦ Киев, на прошлой неделе, к нашему стенду подошел посетитель и зразу задал вопрос, есть ли в нашем журнале «Винахідник і раціоналізатор» информация о мотор-колесе Шкондина . Мой отрицательный ответ смутил его, но мы разговорились и нашли точки соприкосновения в изобретениях, касающихся электроприводов для велосипеда.

В свое время на блоге я рассказывал об асинхронном колесе российского инженера Дмитрия Дуюнова. Но нашего посетителя интересовала разработка именно Шкондина, поэтому я нашел подходящий материал и решил возобновить в памяти это оригинальное устройство, способное значительно усилить эффект езды на велосипеде и не только на нем.

Об истории изобретения

Увидеть металлический диск внутри оси велосипедного колеса сегодня можно довольно часто. Не сложно догадаться, что это не что иное, как велосипедный электродвигатель, названный мотор-колесо. В свое время такую разработку выполнил и запатентовал инженер-изобретатель Василий Шкондин. Нужно отдать должное российскому ученому, который более 20 лет занимался внедрением своего главного изобретения - импульсно-инерционного электрического мотор-колеса.

Изобретения электротранспортных технологий всегда пользовались особым вниманием. Довольно удачные попытки совмещение двигателя с колесом воедино, так чтобы отпала необходимость в трансмиссии, предпринимались ещё в XІX веке. В апреле 1900 года на парижской выставке World Expo был замечен электромобиль Lohner-Porsche с электрическими мотор-колесами. Данную двигательную установку в автомобиле реализовал ни кто иной, как молодой инженер Фердинанд Порше - всемирно известный производитель автомобилей в XІX веке.

Конструкция мотор-колес Порше настолько пришлась людям по вкусу, что начиная с 1911 года колесными электродвигателями системы Лонера-Порше стали оборудоваться не только автомобили, но и троллейбусы, самосвалы, железнодорожные локомотивы. Правда, с развитием бензиновых двигателей, мотор-колеса начали встречаться в автомобилях куда реже, но сама идея - подобная разработка просто не могла быть забыта.

А что же велосипеды? В период с 1860 по 1895 год было создано несколько версий электрических велосипедов, среди которых присутствовали и модели с мотор-колесами. В 1895 году Огдэн Болтон получил патент за разработку щеточно-коллекторного двигателя постоянно тока, внедренного во внутреннее пространство заднего колеса. Попытки оснащения велосипедов мотор-колесами предпринимались не раз, но по причине того, что велосипедные электрические двигатели были довольно увесистыми и не обеспечивали развития достаточного показателя крутящего момента, довольно долгое время данное изобретение находилось в небытие.

Создать дешевое электрическое велосипедное мотор-колесо совсем небольших размеров и малого веса, но с отличным показателем крутящего момента, да ещё лишь с одной единственной вращающейся деталью удалось в 1980-х гг. инженеру Василию Шкондину. Поставив перед собой цель создания двигателя, существенно превосходящего традиционные моторы по показателям работоспособности, Шкондин собрал рабочий образец импульсно-инерционного двигателя. Принципы однополярных и чередующихся импульсов в последующем были подтверждены целым рядом патентов, выданных на имя изобретателя.

Это изобретение стало поистине революционным, ведь впервые за многие годы удалось решить задачу установления идеального баланса между велосипедом и электрическим двигателем. На Всемирном салоне изобретений "Брюссель - Эврика — 1990" Василий Шкондин был удостоен звания человека года, а за свою разработку инвалидной электроколяски получил золотую медаль. Несколько позже российский изобретатель получил награды на выставках в Брюсселе, Женеве, Сеуле, Ганновере, Париже.

Но как ни печально, изобретение длительное время нельзя было реализовать и до серийного производства дело так и не доходило. В середине 1990-х после получения патента США, была налажена сборка электровелосипедов на основе двигателя Шкондина на Кипре. А в 2003 году изобретением российского ученого заинтересовалась английская фирма «Flintstone Technologies». Для реализации данного проекта было создано предприятие «Ultra Motors», статутный капитал которого в момент основания составлял практически миллион долларов. В данной компании Василий Шкондин, занял должность технического директора.

В этом же году состоялось ещё одно финансовое "вливание" в реализацию его разработки - в качестве инвестора выступила компания «Русские технологии», возложив на проект Василия Васильевича "большие надежды", исчисляемые более чем одним миллионом долларов. Экологически безопасными и эффективными в работе мотор-колесами заинтересовалась и индийская компания «Crompton Greaves». В 2005 году она начала производить мотор-колеса системы Василия Шкондина с целью комплектации ими велосипедов, скутеров, трициклов, инвалидных колясок, погрузочных электрокаров.

Свое главное изобретение Василий Шкондин позиционирует, как мотор-колесо. Хоть сам по себе коллекторный электрический двигатель может быть модифицирован и использован в разного рода электротехнике, его главное предназначения - расширение возможностей велосипедного транспорта. Для того, чтобы понять особенности и принцип работы мотор-колеса Шкондина, его нужно прежде всего сравнить со стандартным двигателем постоянного тока и бесколлекторным электромотором.

Шкондин получил несколько патентов на свои изобретения, но наиболее важным было то, что ученый рассматривал возможность использования в электрическом транспортном средстве двигателя без коллектора (щеточного-коллекторного узла). Электродвигатель Шкондина - это объединение магнитных дорожек, динамично изменяющих параметры при переключении обмоток электромагнитов.

Вначале Василий Васильевич испытал свой двигатель на инвалидной коляске, после чего уже решился на установку мотор-колеса на велосипед, скутер, мотоцикл и даже автомобиль. Как отметил разработчик, мотор отлично показал себя во всех вариантах комплектации. Так как электродвигатель, интегрируемый во внутреннее пространство колеса транспортного средства, уже не имел редуктора, шестеренок и трансмиссии, он получился значительно более прочным и долговечным.

Конструктивные особенности и принцип работы

Что касается конструктивного исполнения, то электродвигатель Шкондина довольно прост — состоит он лишь из 5-6 основных деталей. Главными элементами мотор-колеса является внутренний статор с круговым магнитоприводом и внешний ротор. На статоре на одинаковом расстоянии друг от друга размещено 11 пар магнитов неодим-железо-борного состава, образуя 22 полюса. На роторе, отделенном от статора воздушным промежутком, имеется 6 подковообразных электромагнитов, расположенных попарно и сдвинутых на 120° в отношении друг друга.

Благодаря тому, что расстояние между полюсами электромагнитов ротора равно расстояние между магнитами статора, при соприкосновении одного из полюсов электромагнитов с соседними полюсами магнитов статора контакта между полюсами иных электромагнитов с полюсами магнитов не возникает. При изменении положения полюсов магнитов относительно друг друга создается градиент напряженности магнитного поля, который, по сути, и является источников образования крутящего момента. Получается, что в определенный момент времени, крутящий момент формирует пять электромагнитов ротора и 20 магнитов статора

Иные компоненты конструкции мотор-колеса Шкондина - закрепленный на корпусе статора распределительный коллектор, состоящий из отдельных, изолированных друг от друга токопроводных пластин, количество которых равно числу электромагнитов, и токосъемники с элементами токосъема. Каждая из пластин соединяется с одним из выводов катушек двух соседних электромагнитов. Каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки. Принцип создания намотки указанных электромагнитов таков: если одна катушка мотается по часовой стрелке, то другую выполняют против часовой стрелки. Обмотки катушек соседних электромагнитов соединяются последовательно, а выводы противоположных - соединяются между собой. Количество витков в обмотках противоположных электромагнитов может быть различным.

В основе работы электродвигателя Шкондина лежит действие сил электромагнитного притяжения и отталкивания, наблюдаемые при взаимодействии электромагнитов ротора и неодимовых магнитов статора. Когда электромагнит проходит между осями неодимовых магнитов, образуется магнитный полюс одноименный с полюсом магнита, который ему уже удалось преодолеть, и противоположный полюсу магнита, к которому он движется. Иными словами, электромагнит отталкивается от одного магнита и притягивается к другому - последующему в направлении вращения. Указанное электромагнитное взаимодействие и обеспечивает вращение обода. Если электромагнит достигает оси магнита, то он обесточивается, так как именно здесь располагается токосъемник. Использование своеобразных "пауз" позволяет существенно экономить энергию аккумуляторных батарей транспортного средства, питая двигатель лишь тогда, когда это будет выгодно. Скорость вращения мотор-колеса прямо зависит от количества электричества подаваемого к токопроводящим пластинам.

КПД электродвигателя составляет 83%. При создании тяги в электродвигателе противоЭДС не наблюдается, однако на холостом ходу конструкция электрического мотор-колеса позволяет максимально эффективно возвращать часть энергии в аккумуляторы за счет возникновения противоЭДС, а не только в момент торможения, существенно увеличивая таким образом дальность пробега электровелосипеда (функция рекуперации энергии).

Внешняя корпусная защитная часть электромотора Шкондина имеет отверстия для продевания спиц и соединения с ободом велосипедного колеса.

Что касается достоинств мотор-колес Шкондина, то они характеризуются не только малым весом и доступной ценой, но и более высокой производительностью, нежели электродвигатель стандартной конструкции. Изобретению Шкондина при относительно простом конструктивном исполнении свойствен свободный инерционный ход, большая скорость вращения. Так, на 300 ваттном электродвигателе, выпушенном согласно его задумки, можно разгонятся без педалей до 25-30 км/ч на ровной дороге. Не совсем низкой будет и скорость перемещения по местности с уклонов в 8 градусов - около 20-22 км/ч. Поддержка функции рекуперации энергии при торможении и спусках позволяет возвращать в аккумуляторные батареи до 180Вт энергии.

Благодаря использованию малого количества деталей удается не только повысить надежность мотор-колеса Шкондина, но и уменьшить его себестоимость практически в два раза по сравнению с иными типами электрических двигателей. В отличии от большинства электромоторов велосипедного транспорта, комплектуемых электронным блоком управления, мотор-колесо Шкондина не требует внешнего управляющего устройства. Этот электродвигатель совершенно не боится пыли, влаги, не имеет свойства нагреваться во время работы.

Простота исполнения, низкая стоимость производства, эксплуатации и ремонта, отличные качественные характеристики делают мотор-колеса Шкондина весомым и ценным продуктом. В настоящее время ведутся работы в направлении широкого внедрения данного электродвигателя в механизм работы разных видов транспорта: электровелосипедов, электроскутеров, электромобилей, водного и воздушного электротранспорта. Данная разработка позволяет ослабить зависимость средств передвижения от сырьевых ресурсов и увеличения их экологичности.

Спасибо за прочтение. Если вам понравилось, пожалуйста, поделитесь с друзьями и в комментариях черкните пару слов своего мнения.

В современном мире кары, автомобили, скутеры и велосипеды работающие на электричестве, привычно уже вошли в жизнь людей. Электроавтомобили Тесла догнали по объемам выпуска АвтоВАЗ. Что, кажется можно сказать нового?

Однако – есть что. Василий Васильевич Шкондин, инженер из российского научгородка Протвино, изобрел принципиально новый импульсно-инерционный электродвигатель, не вписывающийся в привычную мировой науки теорию электромагнетизма. Причем произошло это… больше 30 лет назад, в 80-х годах 20 века. И не просто изобрел, а так же запатентовал систему его работы из однополярных и чередующихся импульсов, российскими и международными патентами.

Работа Шкондина получила признание на многих выставках, в основном зарубежных. В 90-х электровелосипеды с колесом Шкондина собирали на Кипре, в начале нового века им интересовались англичане, а индийцы наладили с 2005 года производство мотор-колес Шкондина и оснащали ими и велосипеды, и скутеры, и инвалидные коляски


Василий Шкондин и министр инноваций Англии лорд Сейсбери передают образец мотор-колеса директору индийского филиала Полу Пейсону. Нью-Дели 2004 год

Все бы ничего, да вот лицензионные права соблюдались не всегда и не всеми. Правда и моторы работали не совсем так, как хотелось бы производителям – где эффективность не та, а где и совсем не удавалось повторить технологию. Следует учитывать и то, что Шкондин тоже не останавливается, он совершенствует свои изобретения.

Главным преимуществом мотора-колеса Василия Васильевича, как и известного автомата Калашникова – минимум деталей, простота и надежность. Пять основных деталей – вот весь двигатель. Несмотря на простоту, КПД у этого устройства составляет восемьдесят три процента.

Внешний статор – внутренний ротор. На статоре – одиннадцать парных неодимовых магнитов, на роторе шесть попарно размещенных, со смещением относительно друг друга в сто двадцать градусов, электромагнитов. Возникающая в определенные моменты (например, на холостом ходу или при езде «с горки») противоЭДС, «возвращает» в батарею электроэнергию.


Российский изобретатель Василий Шкондин со своим парком уникальных электрический машин

Исходя из характеристик мотора и малого количества деталей, себестоимость производства в сравнении с колесами-моторами, применяемыми сегодня, меньше в разы. Он не боится влаги, пыли и перегрева, легок и силен. Сплошные преимущества.

Шкондин так же предлагает использовать свои устройства, например, для малой авиации – небольшой мотор (всего двадцать кг) с мощностью по тяге порядка 270 Н·м. (как современный трёхлитровый шестицилиндровый двигатель в двести «лошадок»). Неплохо, правда?

Но это все «лирика», самый главный вопрос – почему мы видим китайские устройства и не видим российское? Когда же поедет колесо Шкондина? И вопрос это нужно переадресовывать чиновникам, госкорпорациям, крупным производствам: без них никакой технологический рывок невозможен. А вот если заинтересуются… тогда, возможно, колесо Шкондина и завертится в полную – на все свои восемьдесят с хвостиком процентов КПД – силу.

Двигатель Шкондина. Видео

Велосипед - это отличное средство передвижения не только для тех, кто постоянно ищет себе адреналин, покоряя новые и новые горные и лесные дороги, но и для тех, кто совершает короткие поездки за продуктами в магазин. Зачастую эти люди довольствуются обычными велосипедами, работа которых основана на мускульной тяге. Но все же с каждым годом растет количество тех, которые двигаются при помощи маленького электрического двигателя. При этом велолюбителю предоставляется возможность ехать на педалях и таким образом заехать на крутую гору еще с большей скоростью. Но не обязательно приобретать новый транспорт в таком случае. Достаточно лишь доукомплектовать старый специальным элементом, которое называется колесо-мотор. На какие правила необходимо обратить внимание при его изготовлении, рассмотрим прямо сейчас.

мотор своими руками? Готовим инструменты

Для начала нам необходимо приобрести новое колесо диаметром от 20 до 28 дюймов. Можно использовать и старое, но в таком случае нужно убедится в его нормальной работе. В идеале колесо не должно образовывать «восьмерок» на ходу и быть хорошо отрегулированным на спицах.

Кроме этого, для создания нужно приобрести аккумуляторную батарею. А для того чтобы можно было регулировать скорость движущегося велосипеда, нужно позаботится об установке специального регулятора скорости. Для хранения батареи покупается чехол или сумка, соответствующая размерам АКБ.

Еще одна немаловажная деталь - контроллер. Этот элемент представляет собой блок с множеством проводов, отвечающий за работу всего мотор-колеса. Контроллер являет

собой плату, расположенную в металлическом (чаще всего алюминиевом) корпусе для защиты от негативного воздействия внешних факторов. Чаще всего он устанавливается на место крепежа фляги, непосредственно на раму.

Чтобы обеспечить бесперебойность работ всех электромеханизмов, следует заготовить комплект предохранителей и провода. Последние можно использовать от обычных аудиоколонок.

Принцип работы устройства

Перед тем как начать изготавливать колесо-мотор, нужно вникнуть в его принцип действия. Данный элемент представляет собой постоянного тока. Колесо-мотор заспицовывается в велосипедный обод и может монтироваться как сзади, так и спереди (некоторые устанавливают его сразу на два колеса). По своей мощности электрические моторы, применяемые для таких байков, могут быть 250 Вт, 500 и даже 1000 Вт. Последний способен развить скорость до 60 километров в час. Правда, вряд ли это будет безопасно на горной трассе или в жилой зоне в черте города. Кстати, вне зависимости от мощности данные электромоторы не нуждаются в дополнительных настройках, регулировках и обслуживании.

колесо своими руками? Правила изготовления


Преимущества использования мотор-колеса на велосипедах

Во-первых, благодаря наличию электрического двигателя вы можете безо всяких физических усилий преодолевать большие расстояния, что особо важно для пожилых и неподготовленных людей. Во-вторых, для езды на таком транспорте, в отличие от мотоциклов и скутеров, не требуется прав определенной категории. А это значит, что управлять им может абсолютно каждый. В-третьих, за счет компактности велосипеда вы не будете стоять в постоянных пробках. К тому же для хранения такого транспорта не нужно приобретать отдельный гараж.

Обслуживание

Сделанное мотор-колесо своими руками (а точнее его электродвигатель), в отличие от двигателя внутреннего сгорания, практически никогда не нуждается в дополнительном обслуживании. А это значит, что затраты на его содержание будут минимальными.

Работает колесо-мотор Шкондина от энергии аккумулятора, который без подзарядки способен преодолеть до 30 километров пути. Но даже если АКБ разрядится, все равно вам не придется буксировать его - в любой момент этот транспорт может превратиться в обычный велосипед, движение которым осуществляется мускульным усилием.

Сколько стоит данная деталь в магазинах?

В среднем новый электродвигатель, устанавливаемый на обод велосипеда, можно приобрести по цене от 10 до 30 тысяч рублей стоит еще дороже). При этом стоит отметить, что стоимость может существенно варьироваться от мощности устройства. Комплект может стоить и 3 тысячи, но его хватит лишь на 200 метров езды.

Изготавливая же его самостоятельно, вы можете сами подобрать для себя такое устройство, которое бы соответствовало вашим требованиям и характеристикам.

Итак, мы выяснили, как сделать мотор-колесо своими руками.

Мотор-колесо Шкондина, проще говоря, двигатель-колесо Шкондина или двигатель Шкондина, – принципиально новый электродвигатель с уникальными характеристиками. Уникальность двигателя Шкондина в его простоте. Двигатель-колесо Шкондина состоит всего из пяти деталей в отличии от обычных электромоторов, собранных из 10-20 узлов, что влияет на его себестоимость. Создав для этих деталей точные матрицы, можно штамповать двигатели Шкондина миллионами.


Двигатель-колесо Шкондина. Мотор-колесо Шкондина:

Мотор-колесо Шкондина , проще говоря, двигатель-колесо Шкондина или двигатель Шкондина , – принципиально новый электродвигатель с уникальными характеристиками.

Ниже на рисунке приведен один из вариантов двигателя Шкондина .

Уникальность двигателя Шкондина в его простоте. Двигатель-колесо Шкондина состоит всего из пяти деталей в отличии от обычных электромоторов, собранных из 10-20 узлов, что влияет на его себестоимость. Создав для этих деталей точные матрицы, можно штамповать двигатели Шкондина миллионами.

– это совокупность магнитных дорожек, динамически меняющих свои параметры за счет переключение обмоток электромагнитов в нужное время и в нужном месте. При этом обмотки электромагнитов нельзя соединять ни звездой, ни треугольником.

– это устройство , которое с высоким КПД использует взаимодействие магнитных полей, параметры которых умело меняются как за счет правильного соотношения между парным числом магнитных полюсов на статоре и числом пар полюсов электромагнитов на роторе, число пар магнитов на статоре больше числа пар полюсов электромагнитов на роторе, правильно сконструированного коллектора или устройства синхронизации в бесколлекторном варианте.

Обладает при той же массе и подаваемого на обмотки ротора тока гораздо большей мощностью, чем электромотор стандартной конструкции.

Двигателю Шкондина конструктивно можно придать любую форму, как в виде колеса (блина), так и в виде цилиндра, наподобие той формы, которую придают существующим двигателям постоянного тока.


Устройство двигателя Шкондина (конструкция, схема и принцип работы):

На рисунке выше представлен один из вариантов двигателя Шкондина.

мотор-колесо Шкондина состоит из статора (внутри) и ротора (снаружи). На статоре через равные промежутки установлено 11 пар магнитов, полюса магнитов чередуются. Всего полюсов 22. На роторе установлены 6 U-образных электромагнитов, у которых, получается, имеется 12 полюсов. На роторе установлены щетки, с помощью которых подается питание на электромагниты, а на статоре установлен коллектор, с которого электрический ток поступает на щетки.

Расстояние между полюсами любого электромагнита ротора равно расстоянию между соседними магнитами на статоре. А это означает, что в момент точного «соприкосновения» полюсов одного из электромагнитов с соседними полюсами магнитов на статоре, полюса остальных электромагнитов с полюсами магнитов на статоре не «соприкасаются».

Сдвиг полюсов электромагнитов на роторе и полюсов магнитов на статоре относительно друг друга создает между ними градиент напряженности магнитного поля, а последний как раз и является источником крутящего момента. Для варианта двигателя Шкондина, изображенного на рисунке получается, что в каждый момент времени крутящий момент создают 5 электромагнитов из 6. Тот электромагнит, полюса которого точно «соприкасаются» с полюсами магнитов на статоре, крутящего момента не создаёт. Получаем своеобразный силовой КПД в 83%. И это при отсутствии противоЭДС. А если считать КПД по доле участвующих в создании тяги магнитов на статоре, то получаем, что из 22 магнитов тягу создают 20 магнитов, т.е. 91%.

Коллектор двигателя Шкондина устроен так, что он в нужное время переключает направление тока в обмотках электромагнитов, что обеспечивает тягу только в одну сторону. Можно даже утверждать, что в данном моторе Шкондина работают сразу 6 классических электромоторов. Мотор действительно работает мотором, а не маховиком. В данном моторе на «полную катушку» используется не только мощность электромагнитного поля, но и коллекторно-щеточный механизм. И при этом двигатель устроен удивительно просто.

Преимущества мотор-колеса Шкондина:

высокий КПД, у последних моделей – 94%,

простота,

низкая себестоимость,

вес втрое меньше по сравнению с электродвигателями той же мощности,

– прочность, надёжность, длительный срок службы,

экономия энергии на 50% и более,

– скорость в разы больше аналогичных по мощности электродвигателей.

Случайные статьи

Вверх