Как состоит двигатель машины. Принцип работы двигателя внутреннего сгорания

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания , являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

Шатунно-поршневые
Роторные
Турбореактивные
Реактивные

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона . Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска .
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна» .

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро Вольта

Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб») .

В 1776 г. Вольта изобрел газовый пистолет - «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения - Вольт.


A - цилиндр, B - «свеча» зажигания, C - поршень, D - «воздушный» шар с водородом, E - храповик, F - клапан сброса отработанных газов, G - рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
Клапан закрывался.
Открывался кран подачи водорода из шара.
Кран закрывался.
Нажатием на кнопку подавался электрический разряд на «свечу».
Смесь вспыхивала и поднимала поршень вверх.
Открывался клапан сброса отработанных газов.
Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В 1833 году , американский изобретатель Лемюэль Веллман Райт , зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.
(см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:

В 1838 году , английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель - двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:

В 1853-57 годах , итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica) , и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом - циклом Отто . Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше) . Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

В 1865 году , французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.

Science Museum, London.

В 1870 году , австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль - «Second Marcus Car».

В 1872 году , американский изобретатель запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй - рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона» .

В 1878 году , шотландский инженер Сэр (в 1917 году посвящён в рыцари) разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.

В 1879 году , построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби - конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen ".


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen ".

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска) , бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа .

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель) , в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.

Музей «Mercedes-Benz» в Штутгарте.

В 1882 году , английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона - это по существу двигатель, работающий по четырёхтактному циклу Отто , но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».

В 1884 году , британский инженер Эдвард Батлер , на лондонской выставке велосипедов "Stanley Cycle Show " продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания , а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин .

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага " (издан в 1865 году) , согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности) .

В журнале «Английский Механик» от 1890 года, Батлер написал - «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов) , который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1891 году , Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons " построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик») , установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик) .
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами) . Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем , часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.

В 1893 году , Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно " под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN) , при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600-650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления
В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.

Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники ".

В 1903 году , Константин Эдуардович Циолковский , в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами », где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания) . В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.

Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

Спасибо всем кто прочитал.

Все права защищены © 2016
Любое использование материалов допускается только с указанием активной ссылки на источник.

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля , необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение .

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы.

Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе

Преподаватель высшей школы, кандидат технических наук

Кузнецов Юрий Александрович

Часть 1. ДВИГАТЕЛЬ И ЕГО МЕХАНИЗМЫ

Двигатель является источником механической энергии.

На подавляющем большинстве автомобилей применяется двигатель внутреннего сгорания.

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Автомобильные двигатели внутреннего сгорания классифицируются:

По роду применяемого топлива:

Легкие жидкие (газ, бензин),

Тяжелые жидкие (дизельное топливо).

Бензиновые двигатели

Бензиновые карбюраторные. Смесь топлива с воздухом готовится в карбюраторе или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи .

Бензиновые инжекторные Смесеобразование происходит путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок ( инжектор ов). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных же системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ) впрыском, управляющим электрическими бензиновыми вентилями.

Газовые двигатели

Двигатель сжигает в качестве топлива углеводороды, находящиеся в газообразном состоянии. Чаще всего газовые двигатели работаю на пропане, но есть и другие, работающие на попутных (нефтяных), сжиженном, доменных, генераторных и других видах газообразного топлива.

Принципиальное отличие газовых двигателей от бензиновых и дизельных в более высокой степени сжатия. Применение газа позволяет избежать излишнего износа деталей, так как процессы сгорания топливовоздушной смеси происходят более правильно, благодаря исходному (газообразному) состоянию топлива. Также газовые двигатели более экономичны, так как газ стоит дешевле нефти и легче добывается.

К несомненным преимуществам двигателей на газе стоит отнести безопасность и бездымность выхлопа.

Сами по себе газовые двигатели редко выпускаются серийно, чаще всего они появляются после переделки традиционных ДВС, путем оборудования их специальным газовым оборудованием.

Дизельные двигатели

Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. Дизельные двигатели являются низкооборотными и характеризуются высоким вращающим моментом на валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием, он не нуждается в электричестве для работы (в автомобильных дизельных двигателях электрическая система используется только для запуска), и, как следствие, менее боится воды.

По способу воспламенения:

От искры (бензиновые),

От сжатия (дизельные).

По числу и расположению цилиндров:

Рядные,

Оппозитные,

V - образные,

VR - образные,

W - образные.

Рядный двигатель


Этот двигатель известен с самого начала автомобильного двигателестроения. Цилиндры расположены в один ряд перпендикулярно коленчатому валу.

Достоинство: простота конструкции

Недостаток: при большом количестве цилиндров получается очень длинный агрегат, который невозможно расположить поперечно относительно продольной оси автомобиля.

Оппозитный двигатель


Горизонтально-оппозитные двигатели отличаются меньшей габаритной высотой, чем двигатели с рядным или V-образным расположением цилиндров, что позволяет снизить центр тяжести всего автомобиля. Легкий вес, компактность конструкции и симметричность компоновки уменьшает момент рыскания автомобиля.

V-образный двигатель


Чтобы уменьшить длину двигателей, в этом двигателе цилиндры расположены под углом от 60 до 120 градусов, при этом продольные оси цилиндров проходят через продольную ось коленчатого вала.

Достоинство: относительно короткий двигатель

Недостатки: двигатель относительно широк, имеет две раздельные головки блока, повышенная стоимость изготовления, слишком большой рабочий объем.

VR-двигатели


В поисках компромиссного решения исполнения двигателей для легковых автомобилях среднего класса пришли к созданию VR-двигателей. Шесть цилиндров под углом 150 градусов образуют относительно узкий и в целом короткий двигатель. Кроме того, такой двигатель имеет только одну головку блока.

W-двигатели


В двигателях W-семейства в одном двигателе соединены два ряда цилиндров в VR-исполнеии.

Цилиндры каждого ряда размещены под углом 150 один к другому, а сами ряды цилиндров расположены под углом 720.

Стандартный автомобильный двигатель состоит из двух механизмов и пяти систем.

Механизмы двигателя

Кривошипно-шатунный механизм,

Газораспределительный механизм.

Системы двигателя

Система охлаждения,

Система смазки,

Система питания,

Система зажигания,

Система выпуска отработавших газов.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Кривошипно-шатунный механизм состоит:

Блока цилиндров с картером,

Головки блока цилиндров,

Поддона картера двигателя,

Поршней с кольцами и пальцами,

Шатунов,

Коленчатого вала,

Маховика.

Блок цилиндров


Является цельнолитой деталью, объединяющей собой цилиндры двигателя. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Отливается как правило — из чугуна, реже — алюминия.

Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло-жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не-большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие-вые сплавы.

Головка блока цилиндров


Является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Поддон картера двигателя


Закрывает снизу картер двигателя (отливается как единое целое с блоком цилиндров) и используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Поршень

Поршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Поршень подразделяется на три части, выполняющие различные функции:

Днище,

Уплотняющая часть,

Направляющая часть (юбка).

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания.

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца.

Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива.

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.



Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Чугун

Достоинства: Поршни из чугуна прочны и износостойки.

Благодаря небольшому коэффициенту линейного расширения они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра.

Недостатки: Чугун имеет довольно большой удельный вес. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, в которых силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газов на днище поршня.

Чугун имеет низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350—400 °C. Такой нагрев нежелателен особенно в карбюраторных двигателях, так как он служит причиной возникновения калильного зажигания.

Алюминий

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

Достоинства:

Малая масса (как минимум на 30 % меньше по сравнению с чугунными);

Высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;

Хорошие антифрикционные свойства.

Шатун


Шатун — деталь, соединяющая поршень (посредством поршневого пальца ) и шатунную шейку коленчатого вала . Служит для передачи возвратно-поступательных движений от поршня на коленчатый вал. Для меньшего износа шатунных шеек коленчатого вала между ними и шатунами помещают специальные вкладыши, которые имеют антифрикционное покрытие .

Коленчатый вал


Коленчатый вал — детальсложной формы, имеющая шейки для крепления шатунов , от которых воспринимает усилия и преобразует их в крутящий момент .

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов.

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике , размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала, на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала, соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Маховик


Массивный диск с зубчатым венцом. Зубчатый венец необходим для запуска двигателя (шестерня стартера входит в зацепление с шестерней маховика и раскручивает вал двигателя). Также маховик служит для уменьшения неравномерности вращения коленчатого вала.

Газораспределительный механизм

Предназначен для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов.

Основными деталями газораспределительного механизма являются:

Распределительный вал,

Впускные и выпускные клапана.

Распределительный вал


По расположению распределительного вала выделяют двигатели:

С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head).

В современных автомобильных двигателях, как правило, расположен в верхней части головки блока цилиндров и соединён со шкивом или зубчатой звёздочкой коленвала ремнём или цепью ГРМ соответственно и вращается с вдвое меньшей частотой, чем последний (на 4-тактных двигателях).


Составной частью распредвала являются его кулачки , количество которых соответствует количеству впускных и выпускных клапанов двигателя. Таким образом, каждому клапану соответствует индивидуальный кулачок, который и открывает клапан, набегая на рычаг толкателя клапана. Когда кулачок «сбегает» с рычага, клапан закрывается под действием мощной возвратной пружины.

Двигатели с рядной конфигурацией цилиндров и одной парой клапанов на цилиндр обычно имеют один распределительный вал (в случае четырёх клапанов на каждый цилиндр, два), а V-образные и оппозитные — либо один в развале блока, либо два, по одному на каждый полублок (в каждой головке блока). Двигатели, имеющие 3 клапана на цилиндр (чаще всего два впускных и один выпускной), обычно имеют один распредвал на головку блока, а имеющие 4 клапана на цилиндр (два впускных и 2 выпускных) имеют 2 распредвала в каждой головке блока.

Современные двигатели иногда имеют системы регулировки фаз газораспределения, то есть механизмы, которые позволяют проворачивать распредвал относительно приводной звездочки, тем самым изменяя момент открытия и закрытия (фазу) клапанов, что позволяет более эффективно наполнять рабочей смесью цилиндры на разных оборотах.

Клапана


Клапан состоит из плоской головки и стержня, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапаны делают значительно больше, чем диаметр выпускного. Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные из жаростойкой, так как последние соприкасаются с горючими отработавшими газами и нагреваются до 600 - 800 0 С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок из жаростойкого чугуна, которые называются седлами.

Принцип работы двигателя

Основные понятия

Верхняя мертвая точка - крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка - крайнее нижнее положение поршня в цилиндре.

Ход поршня - расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания - пространствомежду головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра - пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя - сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра - сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия - показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия -давление в цилиндре в конце такта сжатия.

Такт - процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Рабочий цикл двигателя

1-ый такт - впуск . При движении поршня вниз в цилиндре образуется разрежение, под действием которого через открытый впускной клапан в цилиндр поступает горючая смесь (смесь топлива с воздухом).

2-ой такт - сжатие . Поршень под действием коленчатого вала и шатуна перемещается вверх. Оба клапана закрыты и горючая смесь сжимается.

3-ий такт - рабочий ход . В конце такта сжатия горючая смесь воспламеняется (от сжатия в дизельном двигателе, от искры свечи в бензиновом двигателе). Под давлением расширяющихся газов поршень перемещается вниз и через шатун приводит во вращение коленчатый вал.

4-ый такт - выпуск . Поршень перемещается вверх, и через открывшийся выпускной клапан выходят наружу отработавшие газы.

Двигателем внутреннего сгорания (ДВС) называют двигатель, в котором сгорание топлива происходит непосредственно внутри рабочей камеры. Именно такие агрегаты широко применяются в автомобильной индустрии, обеспечивая преобразование тепловой энергии от сгорания топлива в механическую силу.

Способ осуществления рабочего цикла может происходить в один такт, или в два такта. Поэтому различают двухтактные и четырехтактные ДВС. Тактом называется ход поршня между двумя мертвыми точками, с поворотом коленчатого вала на 180 градусов.

Принцип работы

Принципы работы каждого из типов двигателей несколько отличаются. В двухтактном моторе за один оборот происходит завершение рабочего цикла за два этапа – за счет сжатия и расширения. Клапаны в таком устройстве отсутствуют, а их функцию выполняет поршень. Его перемещение обеспечивает открытие и закрытие продувочных окон.

Рабочий процесс в четырехтактном моторе происходит за четыре этапа. При этом к сжатию и расширению добавляются такие процессы, как впуск на первом и выпуск на четвертом этапах, соответственно.

Главным различием таких моторов являются отличные механизмы газообмена, т.е. подача топлива в цилиндры и отвод отработанных газов. В конструкцию четырехтактных агрегатов включен газораспределительный механизм, обеспечивающий открытие и закрытие клапанов в определенные моменты времени. В двухтактных моторах цилиндры опорожняются и заполняются в моменты тактов сжатия и расширения.

Видео: Устройство и как работает двигатель внутреннего сгорания

Общее устройство ДВС

По типу преобразования тепловой энергии все двигатели можно разделить на такие виды:

  • Поршневые. В таких агрегатах сгорание топлива происходит в цилиндрах, а благодаря возвратно-поступательному движению поршня за счет кривошипно-шатунного механизма тепловая энергия преобразуется в механическую;
  • Роторно-поршневые. Энергия преобразовывается при помощи вращения ротора со специальным профилем за счет рабочих газов;
  • Газотурбинные. В таких двигателях превращение энергии обеспечивает ротор с клиновидными лопатками.

Самым популярным и востребованным среди всех видов агрегатов является поршневой ДВС, за счет своей универсальности, способности к быстрому запуску и возможностью работы с различными видами горючего.

Общее устройство ДВС включает корпус агрегата, а также два типа механизмов – кривошипно-шатунный и газораспределительный. Помимо этого он содержит ряд систем – питания, зажигания, пуска, охлаждения и смазки. Все перечисленные системы состоят из определенных узлов и механизмов, а также необходимых коммуникационных элементов.

Важно! Только благодаря слаженному выполнению механизмами и системами своих функций обеспечивается бесперебойная работа ДВС.

Кривошипно-шатунный механизм

Циклическое поступательное движение поршня, описываемое им при перемещении в цилиндре, должно быть преобразовано во вращательное движение коленчатого вала. Именно это действие и обеспечивается благодаря кривошипно-шатунному механизму (КШМ).

В конструкцию такого механизма входят подвижные составляющие – поршни, поршневые кольца, пальцы, шатуны, маховик и коленчатый вал. Также КШМ включает и неподвижные элементы – блок цилиндров и прокладка, головка блока цилиндров, цилиндры, картер, поддон. Кроме того, устройство включает и различные элементы креплений, крепежные и шатунные подшипники.

Газораспределительный механизм

Благодаря газораспределительному механизму (ГРМ) своевременная подача в цилиндры в зависимости от типа ДВС воздуха или топливно-воздушной смеси, а также выпуска в систему выхлопа отработанных газов.

Интересно! Благодаря своевременному открытию или закрытию клапанов ГРМ обеспечивается бесперебойная работа механизма.

В состав конструкции ГРМ входят такие узлы и механизмы:

  • Распредвал. Чугунный или стальной элемент, который открывает или закрывает клапаны.
  • Толкатели. Обеспечивают передачу усилий на клапаны от кулачков.
  • Впускные и выпускные клапаны. Способствуют подачи смеси в камеру, а также удаляют отработанные газы. В зависимости от диаметра головки различаются впускные и выпускные клапаны. Кроме того головка впускного клапана – имеет хромированное покрытие, а головка выпускного изготовлена из жаропрочной стали.
  • Штанги. Благодаря которым происходит передача усилия от толкателей к штангам.
  • Привод ГРМ, который обеспечивает открытие и закрытие клапанов, за счет передачи вращения коленвала на распредвал. В качестве привода может использоваться как ремень, так и цепь ГРМ, а также зубчатая передача.

Система питания

В состав данной системы входят такие устройства, как элементы, предназначенные для хранения топлива, воздухоочистительные приборы, узлы, обеспечивающие очистку и подачу топлива, а также приборы для приготовления топливной смеси.

Элементами питания ДВС являются:

  • Топливный бак и топливопровода;
  • Топливный фильтр и насос;
  • Воздушный фильтр;
  • Карбюратор, моновпрыск или инжектор, в зависимости от устройства системы питания.
Интересно! В инжекторных системах питания регулировку работы топливных форсунок осуществляет электронное устройство – блок управления, в конструкцию которого включены различные датчики контроля.

Главными функциями топливной системы являются:

  • Подача топлива из бака;
  • Фильтрация горючего;
  • Образование горючей смеси;
  • Подача смеси в цилиндры.

Отличаются топливные системы в зависимости от типа используемого горючего: в дизельных агрегатах впрыск в камеру происходит под высоким давлением, для чего применяется топливный насос высокого давления.

Система зажигания

Главная функция данной системы является подача искры к свечам зажигания в определенный момент времени. Системы зажигания бывают трех основных типов:

  • Контактная. Создание импульсов происходит в момент разрыва контактов.
  • Бесконтактная. Управляющие импульсы создает транзисторное управляющее устройство.
  • Микропроцессорная система зажигания управляется электронным устройством.

Основными элементами системы являются:

  • Источник питания;
  • Выключатель зажигания;
  • Накопитель;
  • Свечи зажигания;
  • Система распределения;
  • Высоковольтный провод.

Принцип работы данной системы основан на накоплении катушкой зажигания напряжения с низкими характеристиками и его преобразовании в высокое. После накопленная энергия передается к свечам зажигания, а образовываемая в необходимый момент времени искра воспламеняет топливно-воздушную смесь.

Пуск

Основными составными механизмами системы пуска ДВС являются:

  • Стартер;
  • Аккумуляторная батарея;
  • Включатель зажигания.

Данная система обеспечивает удобный, надежный и быстрый пуск двигателя в независимости от условий эксплуатации автомобиля.

Охлаждение

Функционирование систем и механизмов ДВС без организации отвода излишнего тепла не возможно, так как их работа сопряжена с повышенным температурным режимом. Основное назначение системы охлаждения – это уменьшение температуры рабочих элементов мотора.

Интересно! Если авто оборудовано автоматической трансмиссией, то система охлаждения участвует также в организации охлаждения трансмиссионной жидкости.

Существует два основных типа систем охлаждения ДВС:

  • Жидкостная;
  • Воздушная.

Помимо основных функций, система охлаждения отвечает за:

  • Работу системы отопления, вентиляции и кондиционирования;
  • Охлаждение масла в смазывающей системе;
  • Охлаждение газов в системе выхлопа.

Наиболее распространенной является жидкостная система охлаждения, чему способствуют равномерное и эффективное охлаждение узлов и механизмов, а также низкий уровень шумности при работе.

Важными элементами системы охлаждения являются:

  • Жидкостной радиатор;
  • Масляный радиатор;
  • Теплообменник;
  • Вентилятор;
  • Центробежный насос;
  • Расширительный бачок;
  • Термостат.

Важным расходным материалом, благодаря которому обеспечивается охлаждение, является рабочая жидкость – антифриз.

Система смазки

Работа механизмов и узлов ДВС происходит в условиях постоянного трения элементов. Это отрицательно влияет на их состояние, вызывая износ и снижая эксплуатационные характеристики агрегата. Именно для предотвращения таких негативных явлений в конструкцию ДВС включена система смазки. Она является комбинированной, т.е. происходит смешивание моторного масла с топливом.

Основными элементами системы смазки ДВС являются:

  • Масляный фильтр и насос;
  • Поддон;
  • Заборник;
  • Контуры, обеспечивающие подачу масла к элементам.

При помощи масляного насоса происходит подача масла в фильтр, а далее оно распределяется между узлами и каналами смазки. Этот процесс происходит постоянно, а благодаря наличию специальных датчиков контролируется давление в системе.

Тюнинг

Для повышения эксплуатационных характеристик двигателя, его модернизации и увеличения крутящего момента используется такая процедура, как тюнинг. Основными видами тюнинга являются:

  • Расточка цилиндров, которая способствует увеличению камеры сгорания топлива, что несколько увеличивает силовые возможности агрегата.
  • Установка турбины, что обеспечивает увеличение мощности и КПД двигателя;
  • Чип-тюнинг – увеличение эксплуатационных характеристик за счет изменения работы электронной части блока управления.
  • Установка закиси азота, что способствует значительному увеличению мощности мотора.

Как правило, тюнинг проводится только в случае полной исправности узлов и механизмов силового агрегата и должен выполняться квалифицированными мастерами автосервисов.

Для бесперебойной и эффективной работы ДВС следует обращать внимание на любые изменения и своевременно производить диагностику и ремонт оборудования.

Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

  • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
  • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
  • относительная распространенность легких углеводородов на нашей планете
  • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

Вместо него на современных атвомобилях зачастую используется цикл Миллера.

Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

Работа бензинового ДВС. Подробный разбор

При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

Система питания

Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

Механизм газораспределения

Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

Именно эти три параметра и являются в совокупности фазами газораспределения.

Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

Принцип работы системы охлаждения двигателя

Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

Электрика

Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.

Случайные статьи

Вверх