Разберемся в циклах работы двигателя. Разберемся в циклах работы двигателя Цикл миллера описание работы двс

В автомобильном строении легковых автомобилей уже более века стандартно используются двигатели внутреннего сгорания . У них есть некоторые минусы, над которыми годами бьются ученые и конструкторы. В результате этих исследований получаются довольно интересные и странные «движки». Об одном из них и пойдет речь в этой статье.

История создания цикла Аткинсона

История создания мотора с циклом Аткинсона корнями уходит в далекую историю. Начнем с того, что первый классический четырехтактный двигатель был изобретен немцем Николаусом Отто в 1876. Цикл такого мотора довольно прост: впуск, сжатие, рабочий ход, выпуск.

Всего через 10 лет после изобретения двигателя Отто, англичанин Джеймс Аткинсон предложил модифицировать немецкий мотор . По сути, двигатель остается четырехтактным. Но Аткинсон немного изменил продолжительность двух из них: первые 2 такта короче, остальные 2 длиннее. Сэр Джеймс реализовал эту схему, с помощью изменения длинны ходов поршней. Но в 1887 году такая модификация двигателя Отто не нашла применения. Несмотря на то, что производительность мотора увеличилась на 10%, сложность механизма не позволяла массово применять цикл Аткинсона для автомобилей.

Но инженеры продолжали работать над циклом сэра Джеймса. Американец Ральф Миллер в 1947 немного усовершенствовал цикл Аткинсона, упростив его. Это позволило применять двигатель в автомобилестроении. Казалось бы, правильнее называть цикл Аткинсона циклом Миллера. Но инженерное сообщество оставило за Аткинсоном право называть мотор по его имени по принципу первооткрывателя. К тому же, с применением новых технологий стало возможным применять более сложный Аткинсоновский цикл, поэтому от цикла Миллера со временем отказались. Например, в новых Тойотах стоит мотор Аткинсона, а не Миллера.

В наше время двигатель, работающий по принципу цикла Аткинсона, ставят на гибриды. Особенно преуспели в этом японцы, которые всегда заботятся об экологичности своих авто. Гибридные Prius от Toyota активно заполняют мировой рынок.

Принцип работы цикла Аткинсона

Как говорилось ранее, цикл Аткинсона повторяет те же такты, что и цикл Отто. Но при использовании одинаковых принципов, Аткинсон создал совершенно новый двигатель.

Мотор сконструирован так, что поршень совершает все четыре такта за один поворот коленвала . Кроме того, такты имеют разную длину: ходы поршня во время сжатия и расширения короче, чем во время впуска и выпуска. То есть, в цикле Отто впускной клапан закрывается почти сразу. В цикле Аткинсона этот клапан закрывается на половине пути к верхней мертвой точке . В обычном ДВС в этот момент уже происходит сжатие.

Двигатель модифицирован особым коленвалом, в котором смещены точки крепления. Благодаря этому, степень сжатия мотора возросла, а потери на трении минимизировались.

Отличие от традиционных двигателей

Напомним, что цикл Аткинсона является четырехтактным (впуск, сжатие, расширение, выброс). Обычный четырехтактный двигатель работает по циклу Отто. Вкратце, напомним его работу. В начале рабочего хода в цилиндре поршень идет вверх, до верхней рабочей точки. Смесь из топлива и воздуха сгорает, газ расширяется, давление на максимуме. Под влиянием этого газа поршень едет вниз, приходит в нижнюю мертвую точку. Рабочий ход окончен, открывается выпускной клапан, через который выходит отработанный газ. В этом месте происходят потери выпуска, т.к. отработанный газ все же имеет остаточное давление, использовать которое невозможно.

Аткинсон уменьшил потерю выпуска. В его двигателе объем камеры сгорания меньше при прежнем рабочем объеме. Это значит, что степень сжатия выше, а ход поршня больше . К тому же, длительность такта сжатия по сравнению с рабочим ходом уменьшается, двигатель работает по циклу с увеличенной степенью расширения (степень сжатия ниже степени расширения). Эти условия позволили уменьшить потерю выпуска, используя энергию отработанных газов.


Вернемся к циклу Отто. При всасывании рабочей смеси дроссельная заслонка закрыта и создает сопротивление на впуске. Происходит это при неполном нажатии на педаль газа. Из-за закрытой заслонки двигатель тратит энергию впустую, создавая насосные потери.

Аткинсон поработал и с тактом впуска. Продлив его, сэр Джеймс добился уменьшения насосных потерь. Для этого поршень доходит до нижней мертвой точки, затем поднимается, оставляя впускной клапан открытым примерно до половины поршневого хода. Часть топливной смеси возвращается во впускной коллектор. В нем повышается давление, что дает возможность приоткрывать дроссельную заслонку на малых и средних оборотах .

Но в серию аткинсоновский мотор не выпускали по причине перебоев в работе. Дело в том, что, в отличие от ДВС, мотор работает только на повышенных оборотах. На холостом ходу он может заглохнуть. Но эта проблема решилась в производстве гибридов. На малых скоростях такие машины едут на электоротяге, а на бензиновый движок переходят только в случае разгона или при нагрузках. Подобная модель как убирает недостатки двигателя Аткинсона, так и подчеркивает его достоинства перед другими ДВС.

Преимущества и недостатки цикла Аткинсона

Двигатель Аткинсона имеет несколько преимуществ , выделяющих его перед остальными ДВС: 1. Снижение топливных потерь. Как говорилось ранее, благодаря изменению длительности тактов, стало возможным сохранять топливо, используя отработанные газы и снижая насосные потери. 2. Маленькая вероятность детонационного сгорания. Степень сжатия топлива уменьшается с 10 до 8. Это позволяет не повышать обороты мотора переключением на пониженную передачу в связи с увеличением нагрузки. Так же вероятность детонационного сгорания меньше из-за выхода тепла из камеры сгорания во впускной коллектор. 3. Маленький расход бензина. В новых гибридных моделях расход бензина равен 4 литра на 100 км. 4. Экономичность, экологичность, высокий КПД.

Но у двигателя Аткинсона есть один существенный недостаток, который не позволял применять его в массовом производстве машин. Из-за невысоких показателей мощности, на маленьких оборотах двигатель может заглохнуть. Поэтому двигатель Аткинсона очень хорошо прижился на гибридах.

Применение цикла Аткинсона в автомобилестроении


Кстати, о машинах, на которые ставят аткинсоновские двигатели. В массовом выпуске эта модификация ДВС появилась не так давно. Как было сказано ранее, первыми пользователями цикла Аткинсона были японские фирмы и Toyota. Одна из самых известных машинMazdaXedos 9/Eunos800 , которая выпускалась в 1993-2002 годы.

Затем, ДВС Аткинсона взяли на вооружение производители гибридных моделей. Одной из самых известных компаний, использующих этот мотор, является Toyota , выпускающая Prius, Camry, Highlander Hybrid и Harrier Hybrid . Такие же двигатели используются в Lexus RX400h, GS 450h и LS600h , а "Форд" и "Ниссан" разработали Escape Hybrid и Altima Hybrid .

Стоит сказать, что в автомобилестроении наблюдается мода на экологию. Поэтому гибриды, работающие на цикле Аткинсона, полностью удовлетворяют потребностям клиентов и экологическим нормам. К тому же прогресс не стоит на месте, новые модификации аткинсоновского мотора улучшают его плюсы и уничтожают минусы. Поэтому с уверенностью можно сказать, что двигатель на основе цикла Аткинсона имеет продуктивное будущее и надежду на долгое существование.

Цикл Миллера - термодинамический цикл используемый в четырёхтактных двигателях внутреннего сгорания. Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым поршневым механизмом двигателя Отто. Вместо того, чтобы сделать такт сжатия механически более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

Для этого Миллер предложил два разных подхода: либо закрывать впускной клапан существенно раньше окончания такта впуска (или открывать позже начала этого такта), либо закрывать его существенно позже окончания этого такта. Первый подход у двигателистов носит условное название «укороченного впуска», а второй - «укороченного сжатия». В конечном счете оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической, при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же, как в двигателе Отто, а такт сжатия как бы сокращается - как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси). Рассмотрим более подробно второй подход Миллера - поскольку он несколько более выгоден с точки зрения потерь на сжатие, и поэтому именно он практически реализован в серийных автомобильных моторах Mazda «Miller Cycle» (такой мотор V6 объемом 2.3 литра с механическим нагнетателем довольно давно устанавливается на автомобиль Mazda Xedos-9, а недавно новейший «атмосферный» мотор I4 такого типа объемом 1.3 литра получила модель Mazda-2).

В таком моторе впускной клапан не закрывается с окончанием такта впуска, а остается открытым в течение первой части такта сжатия. Хотя на такте впуска топливо-воздушной смесью был заполнен весь объем цилиндра, часть смеси вытесняется обратно во впускной коллектор через открытый впускной клапан, когда поршень двигается вверх на такте сжатия. Сжатие смеси фактически начинается позже, когда впускной клапан наконец закрывается, и смесь оказывается запертой в цилиндре. Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обусловленных детонационными свойствами топлива - приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия». Другими словами, при той же фактической степени сжатия (ограниченной топливом) мотор Миллера имеет значительно большую степень расширения, чем мотор Отто. Это дает возможность более полно использовать энергию расширяющихся в цилиндре газов, что, собственно, и повышает тепловую эффективность мотора, обеспечивает высокую экономичность двигателя и так далее.

Разумеется, обратное вытеснение заряда означает падение мощностных показателей двигателя, и для атмосферных двигателей работа по такому циклу имеет смысл только в относительно узком режиме частичных нагрузок. В случае постоянных фаз газораспределения компенсировать это во всем динамическом диапазоне позволяет только применение наддува. На гибридных моделях недостаток тяги в неблагоприятных режимах компенсируется тягой электродвигателя.

Выгода от повышения тепловой эффективности цикла Миллера относительно цикла Отто сопровождается потерей пиковой выходной мощности для данного размера (и массы) двигателя из-за ухудшения наполнения цилиндра. Так как для получения такой же выходной мощности потребовался бы двигатель Миллера большего размера, чем двигатель Отто, выигрыш от повышения тепловой эффективности цикла будет частично потрачен на увеличившиеся вместе с размерами двигателя механические потери (трение, вибрации и т. д.). Именно поэтому инженеры Mazda построили свой первый серийный мотор с циклом Миллера не атмосферным. Когда они присоединили к двигателю нагнетатель типа Lysholm, им удалось восстановить высокую удельную мощность, почти не теряя эффективности, обеспечиваемой циклом Миллера. Именно это решение обусловило привлекательность мотора Mazda V6 «Miller Cycle», устанавливаемого на Mazda Xedos-9 (Millenia или Eunos-800). Ведь при рабочем объеме 2.3 л он выдает мощность 213 л.с. и крутящий момент 290 Нм, что равноценно характеристикам обычных 3-литровых атмосферных моторов, и в то же время расход топлива для такого мощного мотора на большой машине очень низкий - на трассе 6.3 л/100 км, в городе - 11.8 л/100 км, что соответствует показателям гораздо менее мощных 1.8-литровых двигателей. Дальнейшее развитие технологий позволило инженерам Mazda построить двигатель Miller Cycle с приемлемыми характеристиками удельной мощности уже без использования нагнетателей - новая система последовательного изменения времени открытия клапанов Sequential Valve Timing System, динамически управляя фазами впуска и выпуска, позволяет частично компенсировать свойственное циклу Миллера падение максимальной мощности. Новый мотор будет выпускаться рядным 4-цилиндровым, объемом 1.3 литра, в двух вариантах: мощностью 74 лошадиные силы (118 Нм крутящего момента) и 83 лошадиные силы (121 Нм). При этом расход топлива у этих двигателей снизился по сравнению с обычным мотором такой же мощности на 20 процентов - до четырех с небольшим литров на сто километров пробега. Кроме того, токсичность мотора с «циклом Миллера» на 75 процентов ниже современных экологических требований. Реализация В классических двигателях Toyota 90-х годов с фиксированными фазами, работающих по циклу Отто, впускной клапан закрывается в 35-45° после НМТ (по углу поворота коленчатого вала), степень сжатия составляет 9.5-10.0. В более современных двигателях с VVT возможный диапазон закрытия впускного клапана расширился до 5-70° после НМТ, степень сжатия выросла до 10.0-11.0. В двигателях гибридных моделей, работающих только по циклу Миллера, диапазон закрытия впускного клапана приходится на 80-120° ... 60-100° после НМТ. Геометрическая степень сжатия - 13.0-13.5. К середине 2010-х появились новые двигатели с широким диапазоном изменения фаз газораспределения (VVT-iW), которые могут работать как в обычном цикле, так и по циклу Миллера. У атмосферных версий диапазон закрытия впускного клапана составляет 30-110° после НМТ при геометрической степени сжатия 12.5-12.7, у турбоверсий - соответственно, 10-100° и 10.0.

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ

Honda NR500 8 клапанов на цилиндр с двумя шатунами на цилиндр, очень редкий, очень интересный и довольно дорогой мотоцикл в мире, хондовцы для гонок мудрили и намудрили))) Было выпущенно около 300 штук и сейчас цены...

В 1989-м году Тойота представила на рынок новое семейство двигателей, серию UZ. В линейки появилось сразу три двигателя, отличающихся рабочим объемом цилиндров, 1UZ-FE, 2UZ-FE и 3UZ-FE. Конструктивно они представляют собой V-образную восьмерку с отде...

Цикл Миллера (Miller Cycle ) был предложен в 1947 году американским инженером Ральфом Миллером, как способ совмещения достоинств двигателя Аткинсона с более простым поршневым механизмом двигателя Дизеля или Отто.

Цикл был разработан для снижения (reduce ) температуры и давления свежего заряда воздуха (charge air temperature ) перед сжатием (compression ) в цилиндре. В результате температура горения в цилиндре снижается за счет адиабатического расширения (adiabatic expansion ) свежего заряда воздуха при поступлении в цилиндр.

В понятие цикла Миллера входят два варианта (two variants ):

а) выбор преждевременного времени закрытия (advanced closure timing ) впускного клапана (intake valve ) или опережение закрытия - перед нижней мертвой точкой (bottom dead centre );

б) выбор запоздалого времени закрытия впускного клапана – после нижней мертвой точкой (BDC).

Первоначально цикл Миллера использовался (initially used ) для увеличения удельной мощности некоторых дизельных двигателей (some engines ). Снижение температуры свежего заряда воздуха (Reducing the temperature of the charge ) в цилиндре двигателя приводило к увеличению мощности без каких-либо существенных изменений (major changes ) блока цилиндров (cylinder unit ). Это объяснялось тем, что снижение температуры в начале теоретического цикла (at the beginning of the cycle ) увеличивает плотность воздушного заряда (air density ) без изменения давления (change in pressure ) в цилиндре. В то время как предел механической прочности двигателя (mechanical limit of the engine ) смещается к более высокой мощности (higher power ), предел тепловой нагрузки (thermal load limit ) смещается к более низким средним температурам (lower mean temperatures ) цикла.

В дальнейшем цикл Миллера вызвал заинтересованность с точки зрения снижения эмиссии NОх. Интенсивное выделение вредных выбросов NОх начинается при превышении температуры в цилиндре двигателя выше 1500 °С - в этом состоянии атомы азота становятся химически активными в результате потери одного или нескольких атомов. А при использовании цикла Миллера при снижении температуры цикла (reduce the cycle temperatures ) без изменения мощности (constant power ) было достигнуто 10 % снижение эмиссии NОх на полной нагрузке и на 1 % (per cent ) уменьшение расхода топлива. Главным образом (mainly ) это объясняется уменьшением тепловых потерь (heat losses ) при прежнем давлении в цилиндре (cylinder pressure level ).

Однако значительно более высокое давление наддува (significantly higher boost pressure ) при той же мощности и отношении воздуха к топливу (air/fuel ratio ) затруднило широкое распространение цикла Миллера. Если максимально достижимое давление газотурбонагнетателя (maximum achievable boost pressure ) будет слишком низким относительно желаемого значения среднего эффективного давления (desired mean effective pressure ), то это приведет к существенному ограничению рабочих характеристик (significant derating ). Даже в случае достаточно высокого давления наддува возможность снижения расхода топлива будет частично нейтрализована (partially neutralized ) из-за слишком быстрого (too rapidly ) снижения КПД компрессора и турбины (compressor and turbine ) газотурбонагнетателя при высоких степенях сжатия (high compression ratios ). Таким образом, практическое использование цикла Миллера потребовало применение газотурбонагнетателя с очень высокой степенью сжатия давления (very high compressor pressure ratios ) и высоким КПД при высоких степенях сжатия (excellent efficiency at high pressure ratios ).

Рис. 6. Система двухступенчатого турбонаддува (Two-stage turbocharging system)

Так в высокооборотных двигателях 32FX компании «Niigata Engineering » максимальное давление сгорания P max и температура в камере сгорания (combustion chamber ) поддерживаются на сниженном нормальном уровне (normal level ). Но при этом одновременно увеличено среднее эффективное давление (brake mean effective pressure ) и снижен уровень вредных выбросов NОх (reduce NOx emissions ).

В дизельном двигателе 6L32FX компании Niigata выбран первый вариант цикла Миллера: преждевременное время закрытия впускного клапана за 10 градусов до НМТ (BDC), вместо 35 градусов после НМТ (after BDC) как у двигателя 6L32CX. Так как время наполнения уменьшается, при нормальном давлении наддува (normal boost pressure ) в цилиндр поступает меньший объем свежего заряда воздуха (air volume is reduced ). Соответственно ухудшается протекание процесса сгорания топлива в цилиндре и как следствие снижается выходная мощность и повышается температура выпускных газов (exhaust temperature rises ).

Для получения прежней заданной мощности на выходе (targeted output ) необходимо увеличить объем воздуха при сниженном времени его поступления в цилиндр. Для этого увеличивают давление наддува (increase the boost pressure ).

В тоже время, одноступенчатая система газотурбонаддува (single-stage turbocharging ) не может обеспечить более высокого давления наддува (higher boost pressure ).

Поэтому получила развитие двухступенчатая система (two-stage system ) газотурбонаддува, в которой турбокомпрессора низкого и высокого давления (low pressure and high pressure turbochargers ) расположены последовательно (connected in series ) один за другим. После каждого турбокомпрессора установлены два промежуточных охладителя воздуха (intervening air coolers ).

Внедрение цикла Миллера совместно с двухступенчатой системой газотурбонаддува позволило увеличить коэффициент мощности до 38,2 (среднее эффективное давление - 3,09 МПа, средняя скорость поршня - 12,4 м/с) при 110 % нагрузки (maximum load-claimed ). Это является наилучшим достигнутым результатом для двигателей с диаметром поршня 32 см.

Кроме этого, параллельно было достигнуто снижение на 20 % уровня эмиссии NОх (NOx emission level ) до 5,8 г/кВт·ч при норме требований ИМО 11,2 г/кВт·ч. Расход топлива (Fuel consumption ) был несколько увеличен при работе на низких нагрузках (low loads ) работы. Однако при средних и высоких нагрузках (higher loads ) расход топлива уменьшился на 75 %.

Таким образом, КПД двигателя Аткинсона увеличено за счет механического уменьшения по времени (поршень движется вверх быстрее, чем вниз) такта сжатия по отношению к рабочему ходу (такт расширения). В цикле Миллера такт сжатия по отношению к рабочему ходу сокращен или увеличен за счет процесса впуска . При этом скорость движение поршня вверх и вниз сохранена одинаковой (как в классическом двигателе Отто - Дизеля).

При одинаковом давлении наддува зарядка цилиндра свежим воздухом снижается вследствие уменьшения времени (reduced by suitable timing ) открытия впускного клапана (inlet valve ). Поэтому свежий заряд воздуха (charge air ) в турбокомпрессоре сжимается (compressed ) до большего давления наддува, чем необходимо для цикла двигателя (engine cycle ). Таким образом, за счет увеличения величины давления наддува при уменьшенном времени открытия впускного клапана в цилиндр поступает такая же порция свежего воздуха. При этом свежий заряд воздуха, проходя через относительно узкое входное проходное сечение, расширяется (эффект дросселя) в цилиндрах (cylinders ) и соответственно охлаждается (consequent cooling ).

Аткинсон, Миллер, Отто и другие в нашем небольшом техническом экскурсе.

Для начала разберемся что такое цикл работы двигателя. ДВС – это объект, который превращает давление от сгорания топлива в механическую энергию, а так как он работает с теплом, то он является тепловой машиной. Так вот, цикл для тепловой машины – это круговой процесс, в котором совпадают начальные и конечные параметры, которые определяют состояние рабочего тела (в нашем случае это цилиндр с поршнем). Такими параметрами являются давление, объем, температура и энтропия.

Именно эти параметры и их изменение задают то, как будет работать двигатель, а другими словами – каким будет его цикл. Поэтому, если у вас есть желание и познания в термодинамике, можете создать свой цикл работы тепловой машины. Главное потом заставить работать ваш двигатель, чтоб доказать право на существование.

Цикл Отто

Начнем мы с самого главного цикла работы, который используют практически все ДВС в наше время. Назван он в честь Николауса Августа Отто, немецкого изобретателя. Первоначально Отто использовал наработки бельгийца Жана Ленуара. Немного понимания первоначальной конструкции даст эта модель двигателя Ленуара.

Так как Ленуар и Отто не были знакомы с электротехникой, то воспламенение в их прототипах создавалось открытым пламенем, которое через трубку зажигало смесь внутри цилиндра. Главное отличие двигателя Отто от двигателя Ленуара было в размещении цилиндра вертикально, что натолкнуло Отто на использование энергии отработанных газов для поднятия поршня после рабочего хода. Рабочий ход поршня вниз начинался под действием атмосферного давления. И после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Именно полнота использования энергии позволила поднять КПД до умопомрачительных на то время 15%, что превышало эффективность даже паровых машин. Кроме того, такая конструкция позволила использовать в пять раз меньше топлива, что потом привело к тотальному доминированию подобной конструкции на рынке.

Но главная заслуга Отто – изобретение четырехтактного процесса работы ДВС. Это изобретение было сделано в 1877 году и тогда же было запатентовано. Но французские промышленники покопались в своих архивах и нашли, что идею четырехтактной работы за несколько лет до патента Отто описал француз Бо де Рош. Это позволило снизить патентные выплаты и заняться разработкой собственных моторов. Но благодаря опыту, двигатели Отто были на голову лучше конкурентов. И к 1897 году их было сделано 42 тысячи штук.

Но что, собственно говоря, такое цикл Отто? Это знакомые нам со школьной скамьи четыре такта ДВС – впуск, сжатие, рабочий ход и выпуск. Все эти процессы занимают равное количество времени, а тепловые характеристики мотора показаны на следующем графике:

Где 1-2 – это сжатие, 2-3 – рабочий ход, 3-4 – выпуск, 4-1 – впуск. КПД такого двигателя зависит от степени сжатия и показателя адиабаты:

, где n – степень сжатия, k – показатель адиабаты, или отношение теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Другими словами – это количество энергии, которую нужно потратить, чтобы вернуть газ внутри цилиндра к прежнему состоянию.

Цикл Аткинсона

Был изобретен в 1882 году Джеймсом Аткинсоном, британским инженером. Цикл Аткинсона повышает эффективность работы цикла Отто, но уменьшает выделяемую мощность. Основное отличие – разное время выполнения разных тактов работы мотора.

Особенная конструкция рычагов двигателя Аткинсона позволяет совершать все четыре хода поршня всего за один поворот коленчатого вала. Также данная конструкция делает ходы поршня разной длинны: ход поршня во время впуска и выпуска длиннее, чем во время сжатия и расширения.

Еще одна из особенностей двигателя в том, что кулачки газораспределения (открытия и закрытия клапанов) расположены прямо на коленчатом валу. Это устраняет потребность отдельной установки распределительного вала. К тому же нет необходимости устанавливать редуктор, так как коленчатый вал крутится с вдвое меньшей скоростью. В XIX веке двигатель распространения не получил из-за сложной механики, но в конце ХХ века он стал более популярным, так как начал применяться на гибридах.

Так что, в дорогих Lexus стоят такие странные агрегаты? Отнюдь нет, цикл Аткинсона в чистом виде никто и не собирался реализовывать, но модифицировать обычный моторы под него – вполне реально. Поэтому не будем долго разглагольствовать об Аткинсоне и перейдем к циклу, который его воплотил в реальность.

Цикл Миллера

Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым двигателем Отто. Вместо того, чтобы сделать механически такт сжатия более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

Для этого Миллер предложил два разных подхода: либо закрывать впускной клапан существенно раньше окончания такта впуска, либо закрывать его существенно позже окончания этого такта. Первый подход у мотористов носит условное название «укороченного впуска», а второй - «укороченного сжатия». В конечном счете оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же как в двигателе Отто, а такт сжатия как бы сокращается - как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси).

Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обуславливаемых детонационными свойствами топлива - приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия». Другими словами, при той же фактической степени сжатия (ограниченной топливом) мотор Миллера имеет значительно большую степень расширения, чем мотор Отто. Это дает возможность более полно использовать энергию расширяющихся в цилиндре газов, что, собственно, и повышает тепловую эффективность мотора, обеспечивает высокую экономичность двигателя и так далее. Также одним из плюсов цикла Миллера является возможность более широкой вариации времени зажигания без риска детонации, что дает более широкие возможности для инженеров.

Выгода от повышения тепловой эффективности цикла Миллера относительно цикла Отто сопровождается потерей пиковой выходной мощности для данного размера (и массы) двигателя из-за ухудшения наполнения цилиндра. Так как для получения такой же выходной мощности потребовался бы двигатель Миллера большего размера, чем двигатель Отто, выигрыш от повышения тепловой эффективности цикла будет частично потрачен на увеличившиеся, вместе с размерами двигателя, механические потери (трение, вибрации и т. д.).

Цикл Дизеля

И напоследок стоит хотя бы кратко вспомнить о цикле Дизеля. Рудольф Дизель изначально хотел создать двигатель, который бы максимально приблизился к циклу Карно, в котором КПД определяется лишь разностью температур рабочего тела. Но так как охлаждать двигатель до абсолютного ноля – не круто, Дизель пошел другим путем. Он увеличил максимальную температуру, для чего начал сжимать топливо до запредельных на то время значений. Мотор у него получился с действительно высоким КПД, но работал изначально на керосине. Первые прототипы Рудольф построил в 1893 году, и только к началу ХХ столетия перешел на другие виды топлива, в том числе и дизельное.

  • , 17 Июл 2015

Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым поршневым механизмом двигателя Отто . Вместо того, чтобы сделать такт сжатия механически более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

Для этого Миллер предложил два разных подхода: либо закрывать впускной клапан существенно раньше окончания такта впуска (или открывать позже начала этого такта), либо закрывать его существенно позже окончания этого такта. Первый подход у двигателистов носит условное название «укороченного впуска», а второй - «укороченного сжатия». В конечном счете оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической, при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же, как в двигателе Отто, а такт сжатия как бы сокращается - как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси).

Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обуславливаемых детонационными свойствами топлива - приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия». Другими словами, при той же фактической степени сжатия (ограниченной топливом) мотор Миллера имеет значительно большую степень расширения, чем мотор Отто. Это дает возможность более полно использовать энергию расширяющихся в цилиндре газов, что, собственно, и повышает тепловую эффективность мотора, обеспечивает высокую экономичность двигателя и так далее.

Выгода от повышения тепловой эффективности цикла Миллера относительно цикла Отто сопровождается потерей пиковой выходной мощности для данного размера (и массы) двигателя из-за ухудшения наполнения цилиндра. Так как для получения такой же выходной мощности потребовался бы двигатель Миллера большего размера, чем двигатель Отто, выигрыш от повышения тепловой эффективности цикла будет частично потрачен на увеличившиеся вместе с размерами двигателя механические потери (трение, вибрации и т. д.).

Компьютерное управление клапанами позволяет менять степень наполнения цилиндра в процессе работы. Это даёт возможность выжать из мотора максимальную мощность, при ухудшении экономических показателей, или добиться лучшей экономичности при уменьшении мощности.

Аналогичную задачу решает пятитактный двигатель , у которого дополнительное расширение производится в отдельном цилиндре.

Случайные статьи

Вверх